SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Räikkönen Katri) ;lar1:(lu)"

Sökning: WFRF:(Räikkönen Katri) > Lunds universitet

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haljas, Kadri, et al. (författare)
  • Bivariate genome-wide association study of depressive symptoms with type 2 diabetes and quantitative glycemic traits
  • 2018
  • Ingår i: Psychosomatic Medicine. - 0033-3174. ; 80:3, s. 242-251
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Shared genetic background may explain phenotypic associations between depression and Type 2 diabetes (T2D). We aimed to study, on a genome-wide level, if genetic correlation and pleiotropic loci exist between depressive symptoms and T2D or glycemic traits. Methods: We estimated single-nucleotide polymorphism (SNP)-based heritability and analyzed genetic correlation between depressive symptoms and T2D and glycemic traits with the linkage disequilibrium score regression by combining summary statistics of previously conducted meta-analyses for depressive symptoms by CHARGE consortium (N = 51,258), T2D by DIAGRAM consortium (N = 34,840 patients and 114,981 controls), fasting glucose, fasting insulin, and homeostatic model assessment of β-cell function and insulin resistance by MAGIC consortium (N = 58,074). Finally, we investigated pleiotropic loci using a bivariate genome-wide association study approach with summary statistics from genome-wide association study meta-analyses and reported loci with genome-wide significant bivariate association p value (p < 5 10−8). Biological annotation and function of significant pleiotropic SNPs were assessed in several databases. Results: The SNP-based heritability ranged from 0.04 to 0.10 in each individual trait. In the linkage disequilibrium score regression analyses, depressive symptoms showed no significant genetic correlation with T2D or glycemic traits (p > 0.37). However, we identified pleiotropic genetic variations for depressive symptoms and T2D (in the IGF2BP2, CDKAL1, CDKN2B-AS, and PLEKHA1 genes), and fasting glucose (in the MADD, CDKN2B-AS, PEX16, and MTNR1B genes). Conclusions: We found no significant overall genetic correlations between depressive symptoms, T2D, or glycemic traits suggesting major differences in underlying biology of these traits. However, several potential pleiotropic loci were identified between depressive symptoms, T2D, and fasting glucose, suggesting that previously established phenotypic associations may be partly explained by genetic variation in these specific loci.
  •  
2.
  • Haljas, Kadri, et al. (författare)
  • Melatonin receptor 1B gene rs10830963 polymorphism, depressive symptoms and glycaemic traits
  • 2018
  • Ingår i: Annals of Medicine. - : Informa UK Limited. - 0785-3890 .- 1365-2060. ; 50:8, s. 704-712
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The association between depression and type 2 diabetes is bidirectional. Underlying biological determinants remain elusive. We examined whether a common melatonin receptor 1B gene diabetes risk variant rs10830963 influenced the associations between depressive symptoms and glycaemic traits. Materials: The Prevalence, Prediction and Prevention of Diabetes-Botnia Study participants (n = 4,455) with no diabetes who underwent an oral glucose tolerance test were genotyped for rs10830963 and completed the Mental Health Inventory on depressive symptoms. Results: The rs10830963 did not influence significantly the associations between depressive symptoms and glycaemic traits. Yet, the addition of each copy of the minor G allele of the rs1080963 and higher depressive symptoms were both, independent of each other, associated significantly with higher glucose response (glucose area under the curve), higher insulin resistance (Insulin Sensitivity Index) and lower insulin secretion (Disposition Index). Depressive symptoms, but not rs1080963, were also significantly associated with higher fasting insulin, insulin area under the curve and insulin resistance (Homeostasis Model Assessment, Homeostasis Model Assessment-2); rs1080963, but not depressive symptoms, was significantly associated with higher fasting glucose and lower Corrected Insulin Response. Conclusions: Our study shows that the diabetes risk variant rs10830963 does not contribute to the known comorbidity between depression and type 2 diabetes.Key messages The association between depression and type 2 diabetes is bidirectional. We tested whether a common variant rs10830963 in the gene encoding Melatonin Receptor 1B influences the known association between depressive symptoms and glycaemic traits in a population-based sample from Western Finland. The MTNR1B genetic diabetes risk variant rs10830963 does not contribute to the known comorbidity between depression and type 2 diabetes. Depressive symptoms and rs10830963 are associated with a worse glycaemic profile independently of each other.
  •  
3.
  • Haljas, Kadri, et al. (författare)
  • The associations of daylight and melatonin receptor 1B gene rs10830963 variant with glycemic traits : the prospective PPP-Botnia study
  • 2019
  • Ingår i: Annals of Medicine. - : Informa UK Limited. - 0785-3890 .- 1365-2060. ; 51:1, s. 58-67
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Seasonal variation in glucose metabolism might be driven by changes in daylight. Melatonin entrains circadian regulation and is directly associated with daylight. The relationship between melatonin receptor 1B gene variants with glycemic traits and type 2 diabetes is well established. We studied if daylight length was associated with glycemic traits and if it modified the relationship between melatonin receptor 1B gene rs10830963 variant and glycemic traits. Materials: A population-based sample of 3422 18–78-year-old individuals without diabetes underwent an oral glucose tolerance test twice, an average 6.8 years (SD = 0.9) apart and were genotyped for rs10830963. Daylight data was obtained from the Finnish Meteorological Institute. Results: Cross-sectionally, more daylight was associated with lower fasting glucose, but worse insulin sensitivity and secretion at follow-up. Longitudinally, individuals studied on lighter days at follow-up than at baseline showed higher glucose values during the oral glucose tolerance test and lower Corrected Insulin Response at follow-up. GG genotype carriers in the rs10830963 became more insulin resistant during follow-up if daylight length was shorter at follow-up than at baseline. Conclusions: Our study shows that individual glycemic profiles may vary according to daylight, MTNR1B genotype and their interaction. Future studies may consider taking daylight length into account.Key messages In Western Finland, the amount daylight follows an extensive annual variation ranging from 4 h 44 min to 20 h 17 min, making it ideal to study the associations between daylight and glycemic traits. Moreover, this allows researchers to explore if the relationship between the melatonin receptor 1B gene rs10830963 variant and glycemic traits is modified by the amount of daylight both cross-sectionally and longitudinally. This study shows that individuals, who participated in the study on lighter days at the follow-up than at the baseline, displayed to a greater extent worse glycemic profiles across the follow-up. Novel findings from the current study show that in the longitudinal analyses, each addition of the minor G allele of the melatonin receptor 1B gene rs10830963 was associated with worsening of fasting glucose values and insulin secretion across the 6.8-year follow-up. Importantly, this study shows that in those with the rs10830963 GG genotype, insulin sensitivity deteriorated the most significantly across the 6.8-year follow-up if the daylight length on the oral glucose tolerance testing date at the follow-up was shorter than at the baseline. Taken together, the current findings suggest that the amount of daylight may affect glycemic traits, especially fasting glucose and insulin secretion even though the effect size is small. The association can very according to the rs10830963 risk variant. Further research is needed to elucidate the mechanisms behind these associations.
  •  
4.
  • Huvinen, Emilia, et al. (författare)
  • Genetic risk of type 2 diabetes modifies the effects of a lifestyle intervention aimed at the prevention of gestational and postpartum diabetes
  • 2022
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 65:8, s. 1291-1301
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: The aim of this study was to assess the interaction between genetic risk and lifestyle intervention on the occurrence of gestational diabetes mellitus (GDM) and postpartum diabetes. Methods: The RADIEL study is an RCT aimed at prevention of GDM and postpartum diabetes through lifestyle intervention. Participants with a BMI ≥30 kg/m2 and/or prior GDM were allocated to intervention and control groups before pregnancy or in early pregnancy. The study visits took place every 3 months before pregnancy, once in each trimester, and at 6 weeks and 6 and 12 months postpartum. We calculated a polygenic risk score (PRS) based on 50 risk variants for type 2 diabetes. Results: Altogether, 516 participants provided genetic and GDM data. The PRS was associated with higher glycaemic levels (fasting glucose and/or HbA1c) and a lower insulin secretion index in the second and third trimesters and at 12 months postpartum, as well as with a higher occurrence of GDM and glycaemic abnormalities at 12 months postpartum (n = 356). There was an interaction between the PRS and lifestyle intervention (p=0.016 during pregnancy and p=0.024 postpartum) when analysing participants who did not have GDM at the first study visit during pregnancy (n = 386). When analysing women in tertiles according to the PRS, the intervention was effective in reducing the age-adjusted occurrence of GDM only among those with the highest genetic risk (OR 0.37; 95% CI 0.17, 0.82). The risk of glycaemic abnormalities at 12 months postpartum was reduced in the same group after adjusting additionally for BMI, parity, smoking and education (OR 0.35; 95% CI 0.13, 0.97). Conclusions/interpretation: Genetic predisposition to diabetes modifies the response to a lifestyle intervention aimed at prevention of GDM and postpartum diabetes. This suggests that lifestyle intervention may benefit from being tailored according to genetic risk. Clinical trial registration: ClinicalTrials.gov identifier: NCT01698385 Graphical abstract: [Figure not available: see fulltext.]
  •  
5.
  • Kalapotharakos, Grigorios, et al. (författare)
  • Plasma Heme Scavengers Alpha-1-Microglobulin and Hemopexin as Biomarkers in High-Risk Pregnancies
  • 2019
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Women with established preeclampsia (PE) have increased plasma concentration of free fetal hemoglobin. We measured two hemoglobin scavenger system proteins, hemopexin (Hpx) and alpha-1-microglobulin (A1M) in maternal plasma using enzyme-linked immunosorbent assay during the late second trimester of pregnancy in women with high and low risk of developing PE. In total 142 women were included in nested case-control study: 42 women diagnosed with PE and 100 controls (49 randomly selected high-risk and 51 low-risk controls). The concentration of plasma A1M in high-risk controls was higher compared to low-risk controls. Women with severe PE had higher plasma A1M levels compared to women with non-severe PE. In conclusion, the concentration of plasma A1M is increased in the late second trimester in high-risk controls, suggesting activation of endogenous protective system against oxidative stress.
  •  
6.
  • Räikkönen, Katri, et al. (författare)
  • Insulin, Glucose, and the Metabolic Syndrome in Cardiovascular Behavioral Medicine
  • 2022
  • Ingår i: Handbook of Cardiovascular Behavioral Medicine. - New York, NY : Springer New York. - 9780387859590 - 9780387859606 ; , s. 809-831
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • It has been known for decades that risk factors for diabetes and cardiovascular disease (CVD) tend to cluster. Metabolic syndrome refers to this risk factor clustering for some of the more well-established and dangerous risk factors. This chapter provides a historical overview on the concept of the metabolic syndrome; describes the clinical criteria used in the definition of the metabolic syndrome and how to measure components of the metabolic syndrome, emphasizing measurements related to insulin and glucose; provides a brief overview of the genetic, endocrine, and early life determinants of the metabolic syndrome; and presents findings from studies that have focused on psychological correlates, determinants, and consequences of the metabolic syndrome, focusing in particular on psychosocial stress and depression.
  •  
7.
  • Tuomi, Tiinamaija, et al. (författare)
  • Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes
  • 2016
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 23:6, s. 1067-1077
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) is a global pandemic. Genome-wide association studies (GWASs) have identified >100 genetic variants associated with the disease, including a common variant in the melatonin receptor 1 b gene (MTNR1B). Here, we demonstrate increased MTNR1B expression in human islets from risk G-allele carriers, which likely leads to a reduction in insulin release, increasing T2D risk. Accordingly, in insulin-secreting cells, melatonin reduced cAMP levels, and MTNR1B overexpression exaggerated the inhibition of insulin release exerted by melatonin. Conversely, mice with a disruption of the receptor secreted more insulin. Melatonin treatment in a human recall-by-genotype study reduced insulin secretion and raised glucose levels more extensively in risk G-allele carriers. Thus, our data support a model where enhanced melatonin signaling in islets reduces insulin secretion, leading to hyperglycemia and greater future risk of T2D. The findings also imply that melatonin physiologically serves to inhibit nocturnal insulin release.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy