SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rönn Tina) ;mspu:(researchreview)"

Sökning: WFRF:(Rönn Tina) > Forskningsöversikt

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ling, Charlotte, et al. (författare)
  • Epigenetic adaptation to regular exercise in humans.
  • 2014
  • Ingår i: Drug Discovery Today. - : Elsevier BV. - 1878-5832 .- 1359-6446. ; 19:7, s. 1015-1018
  • Forskningsöversikt (refereegranskat)abstract
    • Regular exercise has numerous health benefits, for example, it reduces the risk of cardiovascular disease and cancer. It has also been shown that the risk of type 2 diabetes can be halved in high-risk groups through nonpharmacological lifestyle interventions involving exercise and diet. Nevertheless, the number of people living a sedentary life is dramatically increasing worldwide. Researchers have searched for molecular mechanisms explaining the health benefits of regular exercise for decades and it is well established that exercise alters the gene expression pattern in multiple tissues. However, until recently it was unknown that regular exercise can modify the genome-wide DNA methylation pattern in humans. This review will focus on recent progress in the field of regular exercise and epigenetics.
  •  
2.
  • Ling, Charlotte, et al. (författare)
  • Epigenetics in Human Obesity and Type 2 Diabetes
  • 2019
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 29:5, s. 1028-1044
  • Forskningsöversikt (refereegranskat)abstract
    • Epigenetic mechanisms control gene activity and the development of an organism. The epigenome includes DNA methylation, histone modifications, and RNA-mediated processes, and disruption of this balance may cause several pathologies and contribute to obesity and type 2 diabetes (T2D). This Review summarizes epigenetic signatures obtained from human tissues of relevance for metabolism—i.e., adipose tissue, skeletal muscle, pancreatic islets, liver, and blood—in relation to obesity and T2D. Although this research field is still young, these comprehensive data support not only a role for epigenetics in disease development, but also epigenetic alterations as a response to disease. Genetic predisposition, as well as aging, contribute to epigenetic variability, and several environmental factors, including exercise and diet, further interact with the human epigenome. The reversible nature of epigenetic modifications holds promise for future therapeutic strategies in obesity and T2D. Epigenetic factors are suggested to contribute to metabolic dysfunctions. In this Review, Ling and Rönn summarize evidence for altered DNA methylation, both as a cause and a consequence of human obesity and type 2 diabetes. As epigenetic alterations are dynamic in nature, they may also provide targets for drug development.
  •  
3.
  • Ling, Charlotte, et al. (författare)
  • Epigenetics of type 2 diabetes mellitus and weight change — a tool for precision medicine?
  • 2022
  • Ingår i: Nature Reviews Endocrinology. - : Springer Science and Business Media LLC. - 1759-5029 .- 1759-5037. ; 18:7, s. 433-448
  • Forskningsöversikt (refereegranskat)abstract
    • Pioneering studies performed over the past few decades demonstrate links between epigenetics and type 2 diabetes mellitus (T2DM), the metabolic disorder with the most rapidly increasing prevalence in the world. Importantly, these studies identified epigenetic modifications, including altered DNA methylation, in pancreatic islets, adipose tissue, skeletal muscle and the liver from individuals with T2DM. As non-genetic factors that affect the risk of T2DM, such as obesity, unhealthy diet, physical inactivity, ageing and the intrauterine environment, have been associated with epigenetic modifications in healthy individuals, epigenetics probably also contributes to T2DM development. In addition, genetic factors associated with T2DM and obesity affect the epigenome in human tissues. Notably, causal mediation analyses found DNA methylation to be a potential mediator of genetic associations with metabolic traits and disease. In the past few years, translational studies have identified blood-based epigenetic markers that might be further developed and used for precision medicine to help patients with T2DM receive optimal therapy and to identify patients at risk of complications. This Review focuses on epigenetic mechanisms in the development of T2DM and the regulation of body weight in humans, with a special focus on precision medicine.
  •  
4.
  • Rönn, Tina, et al. (författare)
  • DNA methylation as a diagnostic and therapeutic target in the battle against Type 2 diabetes.
  • 2015
  • Ingår i: Epigenomics. - : Future Medicine Ltd. - 1750-192X .- 1750-1911. ; 7:3, s. 451-460
  • Forskningsöversikt (refereegranskat)abstract
    • Type 2 diabetes (T2D) develops due to insulin resistance and impaired insulin secretion, predominantly in genetically predisposed subjects exposed to nongenetic risk factors like obesity, physical inactivity and ageing. Emerging data suggest that epigenetics also play a key role in the pathogenesis of T2D. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissue from subjects with T2D compared with nondiabetic controls. Environmental factors known to affect T2D, including obesity, exercise and diet, have also been found to alter the human epigenome. Additionally, ageing and the intrauterine environment are associated with differential DNA methylation. Together, these data highlight a key role for epigenetics and particularly DNA methylation in the growing incidence of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Rönn, Tina (4)
Ling, Charlotte (4)
Bacos, Karl (1)
Lärosäte
Lunds universitet (4)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy