SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rafiq S) ;lar1:(cth)"

Sökning: WFRF:(Rafiq S) > Chalmers tekniska högskola

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
2.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
3.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
4.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Rafiq, Tariq, et al. (författare)
  • EFFECTS OF MICROTEARING MODES ON THE EVOLUTION OF ELECTRON TEMPERATURE PROFILES IN HIGH COLLISIONALITY NSTX DISCHARGES
  • 2018
  • Ingår i: IAEA Fusion Energy Conference. ; 27
  • Konferensbidrag (refereegranskat)abstract
    • A goal of this research project is to describe the evolution of the electron temperature profiles in high collisionality NSTX H-mode discharges. Gyrokinetic simulations indicate that microtearing modes (MTMs) are a source of significant electron thermal transport in these discharges. In order to understand the effect MTMs have on transport and, consequently, on the evolution of electron temperature in NSTX discharges, a reduced transport model for MTMs has been developed. The dependence of the MTM real frequency and growth rate on plasma parameters, appropriate for high collisionality NSTX discharges, is obtained employing the new MTM transport model.  The dependencies on plasma parameters are compared and found to be consistent with MTM results obtained using the gyrokinetic GYRO code.  The MTM real frequency, growth rate, magnetic fluctuations and resulting electron thermal transport are examined for high collisionality NSTX discharges in systematic scans over plasma parameters. In earlier studies it was found that the version of the Multi-Mode (MM) transport model, that did not include the effect of MTMs, provided a suitable description of the electron temperature profiles in high collisionality standard tokamak discharges. That version of the MM model included contributions to electron thermal transport from the ion temperature gradient, trapped electrons, kinetic ballooning, peeling ballooning, collisionless and collision dominated MHD modes, and electron temperature gradient modes. When the MM model, that includes transport associated with MTMs, is installed in the TRANSP code and is utilized in studying electron thermal transport in high collisionality NSTX discharges, it is found that agreement with the experimental electron temperature profile is significantly improved.
  •  
6.
  • Rafiq, T., et al. (författare)
  • Microtearing instabilities and electron thermal transport in low and high collisionality NSTX discharges
  • 2021
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 28:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Microtearing mode (MTM) real frequency, growth rate, magnetic fluctuation amplitude, and resulting electron thermal transport are studied in systematic NSTX scans of relevant plasma parameters. The dependency of the MTM real frequency and growth rate on plasma parameters, suitable for low and high collision NSTX discharges, is obtained by using the reduced MTM transport model [T. Rafiq et al., Phys. Plasmas 23, 062507 (2016)]. The plasma parameter dependencies are compared and found to be consistent with the results obtained from MTM using the gyrokinetic GYRO code. The scaling trend of collision frequency and plasma beta is found to be consistent with the global energy confinement trend observed in the NSTX experiment. The strength of the magnetic fluctuation is found to be consistent with the gyrokinetic estimate. In earlier studies, it was found that the version of the multi-mode (MM) anomalous transport model, which did not contain the effect of MTMs, provided an appropriate description of the electron temperature profiles in standard tokamak discharges and not in spherical tokamaks. When the MM model, which involves transport associated with MTMs, is incorporated in the TRANSP code and is used in the study of electron thermal transport in NSTX discharges, it is observed that the agreement with the experimental electron temperature profile is substantially improved.
  •  
7.
  • Rafiq, Tariq, 1971, et al. (författare)
  • Microtearing Modes in Low Collisionality NSTX Discharges
  • 2019
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Recently, a new unified fluid/kinetic MTM model is developed and incorporated into the Multi-Mode Model (MMM). The MTM model has been found to reproduce many of the linear gyrokinetic results predicted in NSTX discharges, such as the variation of real frequency and growth rates with poloidal wavenumber, beta, and electron temperature (T e ) and density gradients. A particularly important result is that the model recovers the non-monotonic dependence of linear MTM growth rate with collision frequency.
  •  
8.
  • Rafiq, Tariq, 1971, et al. (författare)
  • PLASMA PROFILE PREDICTION IN NSTX DISCHARGES USING THE UPDATED MULTI-MODE ANOMALOUS TRANSPORT MODULE
  • 2023
  • Ingår i: Fusion Energy Conference. ; 29
  • Konferensbidrag (refereegranskat)abstract
    • The objective of this study is twofold: firstly, to demonstrate the consistency between the anomalous transport results produced by updated Multi-Mode Model (MMM) version 9.1 and those obtained through gyrokinetic simulations; and secondly, to showcase MMM’s ability to predict electron and ion temperature profiles in low aspect ratio, high beta NSTX discharges. MMM encompasses a range of transport mechanisms driven by electron and ion temperature gradients, trapped electrons, kinetic ballooning, peeling, microtearing, and drift resistive inertial ballooning modes. These modes within MMM are being verified through corresponding gyrokinetic results. The modes that potentially contribute to ion thermal transport are stable in MMM, aligning with both experimental data and findings from linear CGYRO simulations. The isotope effects on these modes are also studied and found to be stabilizing, consistent with the experimental trend. The electron thermal power across the flux surface is computed within MMM and compared to experimental measurements and nonlinear CGYRO simulation results. Specifically, the electron temperature gradient modes (ETGM) within MMM account for 2.0 MW of thermal power, consistent with experimental findings. It is noteworthy that the ETGM model requires approximately 5.0 ms of computation time on a standard desktop, while nonlinear CGYRO simulations necessitate 8.0 hours on 8 K cores. MMM proves to be highly computationally efficient, a crucial attribute for various applications, including real-time control, tokamak scenario optimization, and uncertainty quantification of experimental data.
  •  
9.
  • Rafiq, T, et al. (författare)
  • Predictive modeling of NSTX discharges with the updated multi-mode anomalous transport module
  • 2024
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 64:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study is twofold: firstly, to demonstrate the consistency between the anomalous transport results produced by updated Multi-Mode Model (MMM) version 9.0.4 and those obtained through gyrokinetic simulations; and secondly, to showcase MMM’s ability to predict electron and ion temperature profiles in low aspect ratio, high beta NSTX discharges. MMM encompasses a range of transport mechanisms driven by electron and ion temperature gradients, trapped electrons, kinetic ballooning, peeling, microtearing, and drift resistive inertial ballooning modes. These modes within MMM are being verified through corresponding gyrokinetic results. The modes that potentially contribute to ion thermal transport are stable in MMM, aligning with both experimental data and findings from linear CGYRO simulations. The isotope effects on these modes are also studied and higher mass is found to be stabilizing, consistent with the experimental trend. The electron thermal power across the flux surface is computed within MMM and compared to experimental measurements and nonlinear CGYRO simulation results. Specifically, the electron temperature gradient modes (ETGM) within MMM account for 2.0 MW of thermal power, consistent with experimental findings. It is noteworthy that the ETGM model requires approximately 5.0 ms of computation time on a standard desktop, while nonlinear CGYRO simulations necessitate 8.0 h on 8 K cores. MMM proves to be highly computationally efficient, a crucial attribute for various applications, including real-time control, tokamak scenario optimization, and uncertainty quantification of experimental data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy