SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rajendran L) "

Sökning: WFRF:(Rajendran L)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Agarwal, Girish, et al. (författare)
  • Light, the universe and everything-12 Herculean tasks for quantum cowboys and black diamond skiers
  • 2018
  • Ingår i: Journal of Modern Optics. - : Informa UK Limited. - 0950-0340 .- 1362-3044. ; 65:11, s. 1261-1308
  • Tidskriftsartikel (refereegranskat)abstract
    • The Winter Colloquium on the Physics of Quantum Electronics (PQE) has been a seminal force in quantum optics and related areas since 1971. It is rather mind-boggling to recognize how the concepts presented at these conferences have transformed scientific understanding and human society. In January 2017, the participants of PQE were asked to consider the equally important prospects for the future, and to formulate a set of questions representing some of the greatest aspirations in this broad field. The result is this multi-authored paper, in which many of the world's leading experts address the following fundamental questions: (1) What is the future of gravitational wave astronomy? (2) Are there new quantum phases of matter away from equilibrium that can be found and exploited - such as the time crystal? (3) Quantum theory in uncharted territory: What can we learn? (4) What are the ultimate limits for laser photon energies? (5) What are the ultimate limits to temporal, spatial and optical resolution? (6) What novel roles will atoms play in technology? (7) What applications lie ahead for nitrogen-vacancy centres in diamond? (8) What is the future of quantum coherence, squeezing and entanglement for enhanced super-resolution and sensing? (9) How can we solve (some of) humanity's biggest problems through new quantum technologies? (10) What new understanding of materials and biological molecules will result from their dynamical characterization with free-electron lasers? (11) What new technologies and fundamental discoveries might quantum optics achieve by the end of this century? (12) What novel topological structures can be created and employed in quantum optics?
  •  
6.
  • Arca Sedda, Manuel, et al. (författare)
  • The missing link in gravitational-wave astronomy A summary of discoveries waiting in the decihertz range
  • 2021
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51, s. 1427-1440
  • Tidskriftsartikel (refereegranskat)abstract
    • Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the similar to 10-10(3) Hz band of ground-based observatories and the similar to 10(-4)-10(- 1) Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass (similar to 10(2)-10(4)M(circle dot)) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.
  •  
7.
  •  
8.
  • Ivanics, Tommy, et al. (författare)
  • Long-term outcomes of ablation, liver resection, and liver transplant as first-line treatment for solitary HCC of 3 cm or less using an intention-to-treat analysis : A retrospective cohort study
  • 2022
  • Ingår i: Annals of Medicine and Surgery. - : Elsevier. - 2049-0801. ; 77
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Curative-intent therapies for hepatocellular carcinoma (HCC) include radiofrequency ablation (RFA), liver resection (LR), and liver transplantation (LT). Controversy exists in treatment selection for earlystage tumours. We sought to evaluate the oncologic outcomes of patients who received either RFA, LR, or LT as first-line treatment for solitary HCC < 3 cm in an intention-to-treat analysis.Materials and methods: All patients with solitary HCC < 3 cm who underwent RFA, LR, or were listed for LT between Feb-2000 and Nov-2018 were analyzed. Cox regression analysis was then performed to compare intention-to-treat (ITT) survival by initial treatment allocation and disease-free survival (DFS) by treatment received in patients eligible for all three treatments.Results: A total of 119 patients were identified (RFA n = 83; LR n = 25; LT n = 11). The overall intention-to-treat survival was similar between the three groups. The overall DFS was highest for the LT group. This was significantly higher than RFA (p = 0.02), but not statistically significantly different from LR (p = 0.14). After multivariable adjustment, ITT survival was similar in the LR and LT groups relative to RFA (LR HR:1.13, 95%CI 0.33-3.82; p = 0.80; LT HR:1.39, 95%CI 0.35-5.44; p = 0.60). On multivariable DFS analysis, only LT was better relative to RFA (LR HR:0.52, 95%CI 0.26-1.02; p = 0.06; LT HR:0.15, 95%CI 0.03-0.67; p = 0.01). Compared to LR, LT was associated with a numerically lower hazard on multivariable DFS analysis, though this did not reach statistical significance (HR 0.30, 95%CI 0.06-1.43; p = 0.13)Conclusion: For treatment-naive patients with solitary HCC < 3 cm who are eligible for RFA, LR, and LT, adjusted ITT survival is equivalent amongst the treatment modalities, however, DFS is better with LR and LT, compared with RFA. Differences in recurrence between treatment modalities and equipoise in ITT survival provides support for a future prospective trial in this setting.
  •  
9.
  • Sedda, Manuel Arca, et al. (författare)
  • The missing link in gravitational-wave astronomy : discoveries waiting in the decihertz range
  • 2020
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 37:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The gravitational-wave astronomical revolution began in 2015 with LIGO's observation of the coalescence of two stellar-mass black holes. Over the coming decades, ground-based detectors like laser interferometer gravitational-wave observatory (LIGO), Virgo and KAGRA will extend their reach, discovering thousands of stellar-mass binaries. In the 2030s, the space-basedlaser interferometer space antenna(LISA) will enable gravitational-wave observations of the massive black holes in galactic centres. Between ground-based observatories and LISA lies the unexplored dHz gravitational-wave frequency band. Here, we show the potential of adecihertz observatory(DO) which could cover this band, and complement discoveries made by other gravitational-wave observatories. The dHz range is uniquely suited to observation of intermediate-mass (similar to 10(2)-10(4)M(circle dot)) black holes, which may form the missing link between stellar-mass and massive black holes, offering an opportunity to measure their properties. DOs will be able to detect stellar-mass binaries days to years before they merge and are observed by ground-based detectors, providing early warning of nearby binary neutron star mergers, and enabling measurements of the eccentricity of binary black holes, providing revealing insights into their formation. Observing dHz gravitational-waves also opens the possibility of testing fundamental physics in a new laboratory, permitting unique tests of general relativity (GR) and the standard model of particle physics. Overall, a DO would answer outstanding questions about how black holes form and evolve across cosmic time, open new avenues for multimessenger astronomy, and advance our understanding of gravitation, particle physics and cosmology.
  •  
10.
  • Aybas, Deniz, et al. (författare)
  • Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance
  • 2021
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 126:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results of an experimental search for ultralight axionlike dark matter in the mass range 162-166 neV. The detection scheme of our Cosmic Axion Spin Precession Experiment is based on a precision measurement of Pb-207 solid-state nuclear magnetic resonance in a polarized ferroelectric crystal. Axionlike dark matter can exert an oscillating torque on Pb-20(7) nuclear spins via the electric dipole moment coupling g(d) or via the gradient coupling g(aNN). We calibrate the detector and characterize the excitation spectrum and relaxation parameters of the nuclear spin ensemble with pulsed magnetic resonance measurements in a 4.4 T magnetic field. We sweep the magnetic field near this value and search for axionlike dark matter with Compton frequency within a 1 MHz band centered at 39.65 MHz. Our measurements place the upper bounds vertical bar g(d)vertical bar < 9.5 x 10(-4) GeV-2 and vertical bar g(aNN)vertical bar( )< 2.8 x 10(-1) GeV-1 (95% confidence level) in this frequency range. The constraint on g d corresponds to an upper bound of 1.0 x 10(-21) e cm on the amplitude of oscillations of the neutron electric dipole moment and 4.3 x 10(-6) on the amplitude of oscillations of CP-violating theta parameter of quantum chromodynamics. Our results demonstrate the feasibility of using solid-state nuclear magnetic resonance to search for axionlike dark matter in the neV mass range.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy