SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Raney Brian J.) "

Sökning: WFRF:(Raney Brian J.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hillier, Ladeana W, et al. (författare)
  • Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution
  • 2004
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 432:7018, s. 695-716
  • Tidskriftsartikel (refereegranskat)abstract
    • We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
  •  
2.
  • Lindblad-Toh, Kerstin, et al. (författare)
  • A high-resolution map of human evolutionary constraint using 29 mammals
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 478:7370, s. 476-482
  • Tidskriftsartikel (refereegranskat)abstract
    • The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering similar to 4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for similar to 60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate-and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.
  •  
3.
  • Buckley, Michael, et al. (författare)
  • Comparing the survival of osteocalcin and mtDNA in archaeological bone from four European sites
  • 2008
  • Ingår i: Journal of Archaeological Science. - : Elsevier BV. - 0305-4403 .- 1095-9238. ; 35:6, s. 1756-1764
  • Tidskriftsartikel (refereegranskat)abstract
    • The small mineral-binding bone protein, osteocalcin, has been applied in a number of studies on ancient bone due to predictions of its long-term stability. However, the intact protein has not been shown to survive in ancient bone devoid of DNA, which is a much more phylogenetically informative biomolecule. In this investigation, the survival of osteocalcin is directly compared to the amplification of mtDNA in a set of 34 archaeological samples from four sites throughout Europe. We also present unpublished osteocalcin sequences of seven mammalian species in addition to the 19 published sequences to highlight phylogenetic limitations of this protein. The results indicate that the intact osteocalcin molecule survives less in archaeological samples than mtDNA and is more subject to the temperature of the archaeological site. Amino acid analyses show the persistence of the dominant protein collagen in samples that failed both osteocalcin and mtDNA analyses. The implications these findings present for biomolecular species identification in archaeological and palaeontological material are that, although proteins do survive beyond ancient DNA, osteocalcin does not appear to be the most ideal target
  •  
4.
  • Foote, Andrew D., et al. (författare)
  • Convergent evolution of the genomes of marine mammals
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 47:3, s. 272-275
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.
  •  
5.
  • Lowe, Craig B, et al. (författare)
  • Three periods of regulatory innovation during vertebrate evolution
  • 2011
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 333:6045, s. 1019-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • The gain, loss, and modification of gene regulatory elements may underlie a substantial proportion of phenotypic changes on animal lineages. To investigate the gain of regulatory elements throughout vertebrate evolution, we identified genome-wide sets of putative regulatory regions for five vertebrates, including humans. These putative regulatory regions are conserved nonexonic elements (CNEEs), which are evolutionarily conserved yet do not overlap any coding or noncoding mature transcript. We then inferred the branch on which each CNEE came under selective constraint. Our analysis identified three extended periods in the evolution of gene regulatory elements. Early vertebrate evolution was characterized by regulatory gains near transcription factors and developmental genes, but this trend was replaced by innovations near extracellular signaling genes, and then innovations near posttranslational protein modifiers.
  •  
6.
  • Miller, Webb, et al. (författare)
  • 28-Way vertebrate alignment and conservation track in the UCSC Genome Browser
  • 2007
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 17:12, s. 1797-1808
  • Tidskriftsartikel (refereegranskat)abstract
    • This article describes a set of alignments of 28 vertebrate genome sequences that is provided by the UCSC Genome Browser. The alignments can be viewed on the Human Genome Browser (March 2006 assembly) at http://genome.ucsc.edu, downloaded in bulk by anonymous FTP from http://hgdownload.cse.ucsc.edu/goldenPath/hg18/multiz28way, or analyzed with the Galaxy server at http://g2.bx.psu.edu. This article illustrates the power of this resource for exploring vertebrate and mammalian evolution, using three examples. First, we present several vignettes involving insertions and deletions within protein-coding regions, including a look at some human-specific indels. Then we study the extent to which start codons and stop codons in the human sequence are conserved in other species, showing that start codons are in general more poorly conserved than stop codons. Finally, an investigation of the phylogenetic depth of conservation for several classes of functional elements in the human genome reveals striking differences in the rates and modes of decay in alignability. Each functional class has a distinctive period of stringent constraint, followed by decays that allow (for the case of regulatory regions) or reject (for coding regions and ultraconserved elements) insertions and deletions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy