SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rask E) ;pers:(Karlsson Torgny)"

Sökning: WFRF:(Rask E) > Karlsson Torgny

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahsan, Muhammad, et al. (författare)
  • The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases.
  • 2017
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 13:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Associations between epigenetic alterations and disease status have been identified for many diseases. However, there is no strong evidence that epigenetic alterations are directly causal for disease pathogenesis. In this study, we combined SNP and DNA methylation data with measurements of protein biomarkers for cancer, inflammation or cardiovascular disease, to investigate the relative contribution of genetic and epigenetic variation on biomarker levels. A total of 121 protein biomarkers were measured and analyzed in relation to DNA methylation at 470,000 genomic positions and to over 10 million SNPs. We performed epigenome-wide association study (EWAS) and genome-wide association study (GWAS) analyses, and integrated biomarker, DNA methylation and SNP data using between 698 and 1033 samples depending on data availability for the different analyses. We identified 124 and 45 loci (Bonferroni adjusted P < 0.05) with effect sizes up to 0.22 standard units' change per 1% change in DNA methylation levels and up to four standard units' change per copy of the effective allele in the EWAS and GWAS respectively. Most GWAS loci were cis-regulatory whereas most EWAS loci were located in trans. Eleven EWAS loci were associated with multiple biomarkers, including one in NLRC5 associated with CXCL11, CXCL9, IL-12, and IL-18 levels. All EWAS signals that overlapped with a GWAS locus were driven by underlying genetic variants and three EWAS signals were confounded by smoking. While some cis-regulatory SNPs for biomarkers appeared to have an effect also on DNA methylation levels, cis-regulatory SNPs for DNA methylation were not observed to affect biomarker levels. We present associations between protein biomarker and DNA methylation levels at numerous loci in the genome. The associations are likely to reflect the underlying pattern of genetic variants, specific environmental exposures, or represent secondary effects to the pathogenesis of disease.
  •  
2.
  •  
3.
  • Ek, Weronica E, et al. (författare)
  • Causal effects of inflammatory protein biomarkers on inflammatory diseases
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:50
  • Tidskriftsartikel (refereegranskat)abstract
    • Many circulating proteins are associated with the presence or severity of disease. However, whether these protein biomarkers are causal for disease development is usually unknown. We investigated the causal effect of 21 well-known or exploratory protein biomarkers of inflammation on 18 inflammatory diseases using two-sample Mendelian randomization. We identified six proteins to have causal effects on any of 11 inflammatory diseases (FDR < 0.05, corresponding to P < 1.4 x 10(-3)). IL-12B protects against psoriasis and psoriatic arthropathy, LAP-TGF-beta-1 protects against osteoarthritis, TWEAK protects against asthma, VEGF-A protects against ulcerative colitis, and LT-alpha protects against both type 1 diabetes and rheumatoid arthritis. In contrast, IL-18R1 increases the risk of developing allergy, hay fever, and eczema. Most proteins showed protective effects against development of disease rather than increasing disease risk, which indicates that many disease-related biomarkers are expressed to protect from tissue damage. These proteins represent potential intervention points for disease prevention and treatment.
  •  
4.
  • Ek, Weronica E, et al. (författare)
  • Genetic variants influencing phenotypic variance heterogeneity
  • 2018
  • Ingår i: Human Molecular Genetics. - : OXFORD UNIV PRESS. - 0964-6906 .- 1460-2083. ; 27:5, s. 799-810
  • Tidskriftsartikel (refereegranskat)abstract
    • Most genetic studies identify genetic variants associated with disease risk or with the mean value of a quantitative trait. More rarely, genetic variants associated with variance heterogeneity are considered. In this study, we have identified such variance single-nucleotide polymorphisms (vSNPs) and examined if these represent biological gene x gene or gene x environment interactions or statistical artifacts caused by multiple linked genetic variants influencing the same phenotype. We have performed a genome-wide study, to identify vSNPs associated with variance heterogeneity in DNA methylation levels. Genotype data from over 10 million single-nucleotide polymorphisms (SNPs), and DNA methylation levels at over 430 000 CpG sites, were analyzed in 729 individuals. We identified vSNPs for 7195 CpG sites (P < 9.4 x 10(-11)). This is a relatively low number compared to 52 335 CpG sites for which SNPs were associated with mean DNA methylation levels. We further showed that variance heterogeneity between genotypes mainly represents additional, often rare, SNPs in linkage disequilibrium (LD) with the respective vSNP and for some vSNPs, multiple low frequency variants co-segregating with one of the vSNP alleles. Therefore, our results suggest that variance heterogeneity of DNA methylation mainly represents phenotypic effects by multiple SNPs, rather than biological interactions. Such effects may also be important for interpreting variance heterogeneity of more complex clinical phenotypes.
  •  
5.
  • Ek, Weronica E., et al. (författare)
  • Tea and coffee consumption in relation to DNA methylation in four European cohorts
  • 2017
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 26:16, s. 3221-3231
  • Tidskriftsartikel (refereegranskat)abstract
    • Lifestyle factors, such as food choices and exposure to chemicals, can alter DNA methylation and lead to changes in gene activity. Two such exposures with pharmacologically active components are coffee and tea consumption. Both coffee and tea has been suggested to play an important role in modulating disease-risk in humans by suppressing tumour progression, decreasing inflammation and influencing estrogen metabolism. These mechanisms may be mediated by changes in DNA methylation.To investigate if DNA methylation in blood is associated with coffee and tea consumption we performed a genome-wide DNA methylation study for coffee and tea consumption in four European cohorts (N = 3,096). DNA methylation was measured from whole blood at 421,695 CpG sites distributed throughout the genome and analysed in men and women both separately and together in each cohort. Meta-analyses of the results and additional regional-level analyses were performed.After adjusting for multiple testing, the meta-analysis revealed that two individual CpG-sites, mapping to DNAJC16 and TTC17, were differentially methylated in relation to tea consumption in women. No individual sites were associated in men or in the sex-combined analysis for tea or coffee. The regional analysis revealed that 28 regions were differentially methylated in relation to tea consumption in women. These regions contained genes known to interact with estradiol metabolism and cancer. No significant regions were found in the sex-combined and male-only analysis for either tea or coffee consumption.
  •  
6.
  • Höglund, Julia, et al. (författare)
  • Improved power and precision with whole genome sequencing data in genome-wide association studies of inflammatory biomarkers
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified associations between thousands of common genetic variants and human traits. However, common variants usually explain a limited fraction of the heritability of a trait. A powerful resource for identifying trait-associated variants is whole genome sequencing (WGS) data in cohorts comprised of families or individuals from a limited geographical area. To evaluate the power of WGS compared to imputations, we performed GWAS on WGS data for 72 inflammatory biomarkers, in a kinship-structured cohort. When using WGS data, we identified 18 novel associations that were not detected when analyzing the same biomarkers with genotyped or imputed SNPs. Five of the novel top variants were low frequency variants with a minor allele frequency (MAF) of <5%. Our results suggest that, even when applying a GWAS approach, we gain power and precision using WGS data, presumably due to more accurate determination of genotypes. The lack of a comparable dataset for replication of our results is a limitation in our study. However, this further highlights that there is a need for more genetic epidemiological studies based on WGS data.
  •  
7.
  • Johansson, Åsa, et al. (författare)
  • Genome-wide association analysis of 350 000 Caucasians from the UK Biobank identifies novel loci for asthma, hay fever and eczema
  • 2019
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 28:23, s. 4022-4041
  • Tidskriftsartikel (refereegranskat)abstract
    • Even though heritability estimates suggest that the risk of asthma, hay fever and eczema is largely due to genetic factors, previous studies have not explained a large part of the genetics behind these diseases. In this GWA study, we include 346 545 Caucasians from the UK Biobank to identify novel loci for asthma, hay fever and eczema and replicate novel loci in three independent cohorts. We further investigate if associated lead SNPs have a significantly larger effect for one disease compared to the other diseases, to highlight possible disease specific effects. We identified 141 loci, of which 41 are novel, to be associated (P ≤ 3x10-8) with asthma, hay fever or eczema, analysed separately or as disease phenotypes that includes the presence of different combinations of these diseases. The largest number of loci were associated with the combined phenotype (asthma/hay fever/eczema). However, as many as 20 loci had a significantly larger effect on hay fever/eczema-only compared to their effects on asthma, while 26 loci exhibited larger effects on asthma compared with their effects on hay fever/eczema. At four of the novel loci, TNFRSF8, MYRF, TSPAN8, and BHMG1, the lead SNPs were in LD (> 0.8) with potentially casual missense variants. Our study shows that a large amount of the genetic contribution is shared between the diseases. Nonetheless, a number of SNPs have a significantly larger effect on one of the phenotypes suggesting that part of the genetic contribution is more phenotype specific.
  •  
8.
  • Karlsson, Torgny, et al. (författare)
  • Body Mass Index and the Risk of Rheumatic Disease : Linear and Nonlinear Mendelian Randomization Analyses
  • 2023
  • Ingår i: Arthritis & Rheumatology. - : John Wiley & Sons. - 2326-5191 .- 2326-5205. ; 75:11, s. 2027-2035
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: While the association between obesity and risk of rheumatic disease is well established, the precise causal relation has not been conclusively proved. Here, we estimate the causal effect of body mass index (BMI) on the risk of developing five different rheumatic diseases.METHODS: Linear and nonlinear mendelian randomization (MR) were used to estimate the effect of BMI on risk of rheumatic disease, and sex-specific effects were identified. Analyses were performed in 361,952 participants from the UK Biobank cohort for the five rheumatic diseases: rheumatoid arthritis (N=8,381 cases), osteoarthritis (N=87,430), psoriatic arthropathy (N=933), gout (N=13,638), and inflammatory spondylitis (N=4,328).RESULTS: Using linear MR, we found that one standard deviation higher BMI increases the incidence rate for rheumatoid arthritis (IRR=1.52; 95% CI=1.36-1.69), osteoarthritis (IRR=1.49; 1.43-1.55), psoriatic arthropathy (IRR=1.80; 1.31-2.48), gout (IRR=1.73; 1.56-1.92), and inflammatory spondylitis (IRR=1.34; 1.14-1.57) in all individuals. BMI was found to be a stronger risk factor in women compared to men for psoriatic arthropathy (sex-interaction P=3.3×10-4 ) and gout (P=4.3×10-3 ), and the effect on osteoarthritis was stronger in premenopausal compared to postmenopausal women (P=1.8×10-3 ). Nonlinear effects of BMI were identified for osteoarthritis and gout in men, and for gout in women. The nonlinearity for gout was also more extreme in men compared to women (P=0.03).CONCLUSION: Higher BMI causes an increased risk for rheumatic disease, an effect that is more pronounced in women for both gout and psoriatic arthropathy. The novel sex- and BMI-specific causal effects identified here, give further insight into rheumatic-disease etiology and mark an important step towards personalized medicine.
  •  
9.
  • Karlsson, Torgny, et al. (författare)
  • Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease.
  • 2019
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 25:9, s. 1390-1395
  • Tidskriftsartikel (refereegranskat)abstract
    • Visceral adipose tissue (VAT)-fat stored around the internal organs-has been suggested as an independent risk factor for cardiovascular and metabolic disease1-3, as well as all-cause, cardiovascular-specific and cancer-specific mortality4,5. Yet, the contribution of genetics to VAT, as well as its disease-related effects, are largely unexplored due to the requirement for advanced imaging technologies to accurately measure VAT. Here, we develop sex-stratified, nonlinear prediction models (coefficient of determination = 0.76; typical 95% confidence interval (CI) = 0.74-0.78) for VAT mass using the UK Biobank cohort. We performed a genome-wide association study for predicted VAT mass and identified 102 novel visceral adiposity loci. Predicted VAT mass was associated with increased risk of hypertension, heart attack/angina, type 2 diabetes and hyperlipidemia, and Mendelian randomization analysis showed visceral fat to be a causal risk factor for all four diseases. In particular, a large difference in causal effect between the sexes was found for type 2 diabetes, with an odds ratio of 7.34 (95% CI = 4.48-12.0) in females and an odds ratio of 2.50 (95% CI = 1.98-3.14) in males. Our findings bolster the role of visceral adiposity as a potentially independent risk factor, in particular for type 2 diabetes in Caucasian females. Independent validation in other cohorts is necessary to determine whether the findings can translate to other ethnicities, or outside the UK.
  •  
10.
  • Rask-Andersen, Mathias, 1979-, et al. (författare)
  • Adiposity and sex-specific cancer risk.
  • 2023
  • Ingår i: Cancer Cell. - 1535-6108 .- 1878-3686. ; 41:6, s. 1186-1197.e4
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is associated with several types of cancer and fat distribution, which differs dramatically between sexes, has been suggested to be an independent risk factor. However, sex-specific effects on cancer risk have rarely been studied. Here we estimate the effects of fat accumulation and distribution on cancer risk in females and males. We performed a prospective study in 442,519 UK Biobank participants, for 19 cancer types and additional histological subtypes, with a mean follow-up time of 13.4 years. Cox proportional hazard models were used to estimate the effect of 14 different adiposity phenotypes on cancer rates, and a 5% false discovery rate was considered statistically significant. Adiposity-related traits are associated with all but three cancer types, and fat accumulation is associated with a larger number of cancers compared to fat distribution. In addition, fat accumulation or distribution exhibit differential effects between sexes on colorectal, esophageal, and liver cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy