SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rauch S) ;lar1:(cth)"

Sökning: WFRF:(Rauch S) > Chalmers tekniska högskola

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Jacobson, Therese, et al. (författare)
  • Cadmium Causes Misfolding and Aggregation of Cytosolic Proteins in Yeast
  • 2017
  • Ingår i: Molecular and Cellular Biology. - : Informa UK Limited. - 0270-7306 .- 1098-5549. ; 37:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Cadmium is a highly poisonous metal and is classified as a human carcinogen. While its toxicity is undisputed, the underlying in vivo molecular mechanisms are not fully understood. Here, we demonstrate that cadmium induces aggregation of cytosolic proteins in living Saccharomyces cerevisiae cells. Cadmium primarily targets proteins in the process of synthesis or folding, probably by interacting with exposed thiol groups in not-yet-folded proteins. On the basis of in vitro and in vivo data, we show that cadmium-aggregated proteins form seeds that increase the misfolding of other proteins. Cells that cannot efficiently protect the proteome from cadmium-induced aggregation or clear the cytosol of protein aggregates are sensitized to cadmium. Thus, protein aggregation may contribute to cadmium toxicity. This is the first report on how cadmium causes misfolding and aggregation of cytosolic proteins in vivo. The proposed mechanism might explain not only the molecular basis of the toxic effects of cadmium but also the suggested role of this poisonous metal in the pathogenesis of certain protein-folding disorders.
  •  
3.
  • Palacios, M.A., et al. (författare)
  • Platinum-group elements: quantification in collected exhaust fumes and studies of catalyst surfaces
  • 2000
  • Ingår i: The Science of the Total Environment. ; 257, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Automotive catalytic converters, in which Pt, Pd and Rh (platinum-group elements; PGEs) are the active components for eliminating several noxious components from exhaust fumes, have become the main source of environmental urban pollution by PGEs. This work reports on the catalyst morphology through changes in catalyst surface by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and laser-induced breakdown spectrometry (LIBS) from fresh to aged catalytic converters. The distribution of these elements in the fresh catalysts analysed (PtPdRh gasoline catalyst) is not uniform and occurs mainly in a longitudinal direction. This heterogeneity seems to be greater for Pt and Pd. PGEs released by the catalysts, fresh and aged 30 000 km, were studied in parallel. Whole raw exhaust fumes from four catalysts of three different types were also examined. Two of these were gasoline catalysts (PtPdRh and PdRh) and the other two were diesel catalysts (Pt). Samples were collected following the 91441 EUDC driving cycle for light-duty vehicle testing. The results show that at 0 km the samples collected first have the highest content of particulate PGEs and although the general tendency is for the release to decrease with increasing number of samples taken, exceptions are frequent. At 30 000 km the released PGEs in gasoline and diesel catalysts decreased significantly. For fresh gasoline catalysts the mean of the total amount released was approximately 100, 250 and 50 ng km−1 for Pt, Pd and Rh, respectively. In diesel catalysts the Pt release varied in the range 400800 ng km−1. After ageing the catalysts up to 30 000 km, the gasoline catalysts released amounts of Pt between 6 and 8 ng km−1, Pd between 12 and 16 ng km−1 and Rh between 3 and 12 ng km−1. In diesel catalysts the Pt release varied in the range 108150 ng km−1. The soluble portion of PGEs in the HNO3 collector solution represented less than 5% of the total amount for fresh catalysts. For 30 000 km the total amount of soluble PGEs released was similar or slightly higher than for 0 km.
  •  
4.
  • Sun, Zhenhua, 1986, et al. (författare)
  • Aquatic biodiversity in sedimentation ponds receiving road runoff - What are the key drivers?
  • 2018
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 610, s. 1527-1535
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, increased attention has been paid to biodiversity conservation provided by blue-green solutions such as engineered ponds that are primarily established for water treatment and flood control. However, little research has been done to analyse the factors that affect biodiversity in such ponds. The purpose of this studywas to evaluate the influence of environmental factors on aquatic biodiversity, mainly macroinvertebrate communities, in road sedimentation ponds in order to provide a foundation for recommendations on aquatic biodiversity conservation. Multivariate statistical methods, including unconstrained and constrained analysis, were applied to examine the relationships between organisms and the water quality as well as physical factors (including plant cover). Stepwise multiple regressions indicated that the most important variables governing the variation in the biological community composition were pond size, average annual daily traffic, metals, chloride, distance to the closest pond from study pond, dissolved oxygen, hydrocarbons, and phosphorus. The presence of most taxa was positively correlated with pond size and negatively correlated with metals. Small ponds with high pollutant loadings were associated with a low diversity and dominated by a few pollution tolerant taxa such as oligochaetes. A comprehensive understanding of impacts of various environmental factors on aquatic biodiversity is important to effectively promote and conserve aquatic biodiversity in such sedimentation ponds. Our results indicate that road sedimentation ponds should be designed large enough, because large ponds are likely to provide a more heterogeneous habitat and thus contain a species rich fauna. In addition, larger ponds seem to be less contaminated due to dilution compared to smaller ponds, thereby maintaining a higher biodiversity. Finally, creating some additional ponds in the vicinity of the sedimentation ponds in areas with few water bodies would increase the connectivity that facilitates the movement of invertebrates between ponds.
  •  
5.
  • Cobelo-García, A., et al. (författare)
  • COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats
  • 2015
  • Ingår i: Environmental Science and Pollution Research. - : Springer Science and Business Media LLC. - 0944-1344 .- 1614-7499. ; 22:19, s. 15188-15194
  • Tidskriftsartikel (refereegranskat)abstract
    • The current socio-economic, environmental and public health challenges that countries are facing clearly need common-defined strategies to inform and support our transition to a sustainable economy. Here, the technology-critical elements (which includes Ga, Ge, In, Te, Nb, Ta, Tl, the Platinum Group Elements and most of the rare-earth elements) are of great relevance in the development of emerging key technologies—including renewable energy, energy efficiency, electronics or the aerospace industry. In this context, the increasing use of technology-critical elements (TCEs) and associated environmental impacts (from mining to end-of-life waste products) is not restricted to a national level but covers most likely a global scale. Accordingly, the European COST Action TD1407: Network on Technology-Critical Elements (NOTICE)—from environmental processes to human health threats, has an overall objective for creating a network of scientists and practitioners interested in TCEs, from the evaluation of their environmental processes to understanding potential human health threats, with the aim of defining the current state of knowledge and gaps, proposing priority research lines/activities and acting as a platform for new collaborations and joint research projects. The Action is focused on three major scientific areas: (i) analytical chemistry, (ii) environmental biogeochemistry and (iii) human exposure and (eco)-toxicology.
  •  
6.
  • Gomez, B., et al. (författare)
  • Levels and risk assessment for humans and ecosystems of platinum group elements in the airborne particles of some European cities
  • 2002
  • Ingår i: The Science of the Total Environment. ; 299, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Traffic is the main source of platinum-group element (PGE) contamination in populated urban areas. There is increasing concern about the hazardous effects of these new pollutants for people and for other living organisms in these areas. Airborne and road dusts, as well as tree bark and grass samples were collected at locations in the European cities of Göteborg (Sweden), Madrid (Spain), Rome (Italy), Munich (Germany), Sheffield and London (UK). Today, in spite of the large number of parameters that can influence the airborne PGE content, the results obtained so far indicate significantly higher PGE levels at traffic sites compared with the rural or non-polluted zones that have been investigated (background levels). The average Pt content in airborne particles found in downtown Madrid, Göteborg and Rome is in the range 7.313.1 pg m−3. The ring roads of these cities have values in the range 4.117.7 pg m−3. In Munich, a lower Pt content was found in airborne particles (4.1 pg m−3). The same tendency has been noted for downtown Rh, with contents in the range 2.22.8 pg m−3, and in the range 0.83.0 and 0.3 pg m−3 for motorway margins in Munich. The combined results obtained using a wide-range airborne classifier (WRAC) collector and a PM-10 or virtual impactor show that Pt is associated with particles for a wide range of diameters. The smaller the particle size, the lower the Pt concentration. However, in particles
  •  
7.
  • Moldovan, M., et al. (författare)
  • Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters
  • 2002
  • Ingår i: The Science of the Total Environment. ; 296, s. 199-208
  • Tidskriftsartikel (refereegranskat)abstract
    • A comparison of platinum-group element (PGE) emission between gasoline and diesel engine catalytic converters is reported within this work. Whole raw exhaust fumes from four catalysts of three different types were examined during their useful lifetime, from fresh to 80 000 km. Two were gasoline engine catalysts (PtPdRh and PdRh), while the other two were diesel engine catalysts (Pt). Samples were collected following the 91441 EUDC driving cycle for light-duty vehicle testing, and the sample collection device used allowed differentiation between the particulate and soluble fractions, the latter being the most relevant from an environmental point of view. Analyses were performed by inductively coupled plasma-mass spectrometry (ICP-MS) (quadrupole and high resolution), and special attention was paid to the control of spectral interference, especially in the case of Pd and Rh. The results obtained show that, for fresh catalysts, the release of particulate PGE through car exhaust fumes does not follow any particular trend, with a wide range (onetwo orders of magnitude) for the content of noble metals emitted. The samples collected from 30 00080 000 km present a more homogeneous PGE release for all catalysts studied. A decrease of approximately one order of magnitude is observed with respect to the release from fresh catalysts, except in the case of the diesel engine catalyst, for which PGE emission continued to be higher than in the case of gasoline engines. The fraction of soluble PGE was found to represent less than 10% of the total amount released from fresh catalysts. For aged catalysts, the figures are significantly higher, especially for Pd and Rh. Particulate PGE can be considered as virtually biologically inert, while soluble PGE forms can represent an environmental risk due to their bioavailability, which leads them to accumulate in the environment.
  •  
8.
  • Rauch, Sebastien, 1971, et al. (författare)
  • Anthropogenic Platinum Enrichment in the Vicinity of Mines in the Bushveld Igneous Complex, South Africa
  • 2013
  • Ingår i: Water, Air, and Soil Pollution. - : Springer Science and Business Media LLC. - 1573-2932 .- 0049-6979. ; 224:1
  • Tidskriftsartikel (refereegranskat)abstract
    • South Africa is the world's single largest platinum (Pt) producer owing to important resources in the Bushveld Igneous Complex (BIC). Little attention has been paid to the environmental impacts of mining in the region despite the extent of mining activities. Here, we present a study on the occurrence of Pt in the vicinity of mines in the BIC. Elevated concentrations were found at all sampling sites in the mining area. The highest Pt concentration in soil (698+/-178 ng g(-1),
  •  
9.
  • Rauch, Sebastien, 1971, et al. (författare)
  • Impact of platinum group element emissions from mining and production activities
  • 2015
  • Ingår i: Environmental Science and Engineering (Subseries: Environmental Science). - Berlin, Heidelberg : Springer Berlin Heidelberg. - 1863-5520. - 9783662445587 ; :9783662445587, s. 19-29
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • South Africa and Russia are the world’s leading platinum group elements (PGE) producers with over 80 % of the global PGE output. Studies performed in the Bushveld Igneous Complex in South Africa and on the Kola Peninsula in Russia show that PGE mining and production activities are important regional PGE sources. Elevated PGE concentrations have been found in snow, soil, road dust, grass, moss and humus collected near PGE mining and production sites. The occurrence of elevated PGE concentrations near mining sites raises concern over environmental effects and exposure of the local population. Studies on the occurrence of PGE in remote environments also suggest that emissions from PGE production activities contribute to the global biogeochemical cycle of the PGE. The loss of PGE during metal production could be as much as 5 % of the global supply and represents a substantial economic loss. Studies on the impact of PGE mining and production activities are few. Further research is needed to better assess the environmental impact of PGE emissions from mining and production activities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (8)
bokkapitel (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Petrucci, F. (3)
Liu, X (1)
Hansen, E. (1)
Chen, X. (1)
Huang, Y. (1)
Izzo, V. (1)
visa fler...
Ji, H. (1)
King, M. (1)
Kobayashi, T. (1)
Li, L. (1)
Li, Y. (1)
Liu, D. (1)
Liu, Y. (1)
Nelson, A. (1)
Qian, J. (1)
Su, D. (1)
Suzuki, Y. (1)
Wang, H. (1)
White, R. (1)
Wu, M. (1)
Wu, Y. (1)
Yan, Z. (1)
Yu, J. (1)
Zhang, J. (1)
Zhang, L. (1)
Zhang, X. (1)
Zhu, J. (1)
Zhu, Y. (1)
Zimmermann, S. (1)
Hu, Q. (1)
Liu, J. (1)
Zhang, R. (1)
Brown, G. (1)
Li, X. (1)
Xu, C. (1)
Zhao, L. (1)
Liu, C. (1)
Smith, D. (1)
Banerjee, S. (1)
Liu, T. (1)
Han, H. (1)
Hill, D. (1)
Li, J. (1)
Robinson, J. (1)
Yu, M. (1)
Ren, Y. (1)
Park, J (1)
Wei, Y. (1)
Adams, M. (1)
Kim, H. S. (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (1)
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Teknik (7)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy