SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rauer L.) ;pers:(Hatzes Artie P.)"

Sökning: WFRF:(Rauer L.) > Hatzes Artie P.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bluhm, P., et al. (författare)
  • Precise mass and radius of a transiting super-Earth planet orbiting the M dwarf TOI-1235: a planet in the radius gap?
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the confirmation of a transiting planet around the bright weakly active M0.5 V star TOI-1235 (TYC 4384-1735-1, V ≈ 11.5 mag), whose transit signal was detected in the photometric time series of sectors 14, 20, and 21 of the TESS space mission. We confirm the planetary nature of the transit signal, which has a period of 3.44 d, by using precise RV measurements with the CARMENES, HARPS-N, and iSHELL spectrographs, supplemented by high-resolution imaging and ground-based photometry. A comparison of the properties derived for TOI-1235 b with theoretical models reveals that the planet has a rocky composition, with a bulk density slightly higher than that of Earth. In particular, we measure a mass of Mp = 5.9 ± 0.6 M⊕ and a radius of Rp = 1.69 ± 0.08 R⊕, which together result in a density of ρp = 6.7- 1.1+ 1.3 g cm-3. When compared with other well-characterized exoplanetary systems, the particular combination of planetary radius and mass places our discovery in the radius gap, which is a transition region between rocky planets and planets with significant atmospheric envelopes. A few examples of planets occupying the radius gap are known to date. While the exact location of the radius gap for M dwarfs is still a matter of debate, our results constrain it to be located at around 1.7 R⊕ or larger at the insolation levels received by TOI-1235 b (~60 S⊕). This makes it an extremely interesting object for further studies of planet formation and atmospheric evolution.
  •  
2.
  • Barragán, O., et al. (författare)
  • K2-139 b: a low-mass warm Jupiter on a 29-d orbit transiting an active K0 V star
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 475:2, s. 1765-1776
  • Tidskriftsartikel (refereegranskat)abstract
    • We announce the discovery of K2-139 b (EPIC 218916923 b), a transiting warm-Jupiter (Teq = 547 ± 25 K) on a 29-d orbit around an active (log R'_HK = -4.46 ± 0.06) K0V star in K2 Campaign 7. We derive the system's parameters by combining the K2 photometry with ground-based follow-up observations. With a mass of 0.387_-0.075^+0.083 M_J and radius of 0.808_-0.033^+0.034 R_J, K2-139 b is one of the transiting warm Jupiters with the lowest mass known to date. The planetary mean density of 0.91_-0.20^+0.24 g/cm^3 can be explained with a core of ~50 M⊕. Given the brightness of the host star (V = 11.653 mag), the relatively short transit duration (~5 h), and the expected amplitude of the Rossiter-McLaughlin effect (~25m/s), K2-139 is an ideal target to measure the spin-orbit angle of a planetary system hosting a warm Jupiter.
  •  
3.
  • Hidalgo, D., et al. (författare)
  • Three planets transiting the evolved star EPIC 249893012: a hot 8.8-Mearth super-Earth and two warm 14.7 and 10.2-Mearth sub-Neptunes
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a new planetary system with three transiting planets, one super-Earth and two sub-Neptunes, that orbit EPIC 249893012, a G8 IV-V evolved star (M⋆ = 1.05 ± 0.05 M☉, R⋆ = 1.71 ± 0.04 R☉, Teff = 5430 ± 85 K). The star is just leaving the main sequence. We combined K2 photometry with IRCS adaptive-optics imaging and HARPS, HARPS-N, and CARMENES high-precision radial velocity measurements to confirm the planetary system, determine the stellar parameters, and measure radii, masses, and densities of the three planets. With an orbital period of 3.5949-0.0007+0.0007days, a mass of 8.75-1.08+1.09 M⊕, and a radius of 1.95-0.08+0.09 R⊕, the inner planet b is compatible with nickel-iron core and a silicate mantle (ρb = 6.39-1.04+1.19 g cm-3). Planets c and d with orbital periods of 15.624-0.001+0.001 and 35.747-0.005+0.005 days, respectively, have masses and radii of 14.67-1.89+1,84 M⊕ and 3.67-0.14+0.17 R⊕ and 10.18-2.42+2.46 M⊕ and 3.94-0.12+0.13 R⊕, respectively, yielding a mean density of 1.62-0.29+0.30 and 0.91-0.23+0.25 g cm-3, respectively. The radius of planet b lies in the transition region between rocky and gaseous planets, but its density is consistent with a rocky composition. Its semimajor axis and the corresponding photoevaporation levels to which the planet has been exposed might explain its measured density today. In contrast, the densities and semimajor axes of planets c and d suggest a very thick atmosphere. The singularity of this system, which orbits a slightly evolved star that is just leaving the main sequence, makes it a good candidate for a deeper study from a dynamical point of view.
  •  
4.
  • Dai, F., et al. (författare)
  • The Discovery and Mass Measurement of a New Ultra-short-period Planet: K2-131
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 154:6, s. 226-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a new ultra-short-period planet and summarize the properties of all such planets for which the mass and radius have been measured. The new planet, EPIC 228732031b, was discovered in K2 Campaign 10. It has a radius of 1.81-0.12+0.16 R_Earth and orbits a G dwarf with a period of 8.9 hr. Radial velocities obtained with Magellan/PFS and TNG/HARPS-N show evidence for stellar activity along with orbital motion. We determined the planetary mass using two different methods: (1) the “floating chunk offset” method, based only on changes in velocity observed on the same night; and (2) a Gaussian process regression based on both the radial velocity and photometric time series. The results are consistent and lead to a mass measurement of 6.5+/- 1.6 M_Earth and a mean density of 6.0-2.7+3.0 g cm‑3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy