SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reeve J) "

Sökning: WFRF:(Reeve J)

  • Resultat 1-10 av 41
  • [1]2345Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
2.
  • Oei, L., et al. (författare)
  • Genome-wide association study for radiographic vertebral fractures: A potential role for the 16q24 BMD locus
  • 2014
  • Ingår i: Bone. - : Elsevier. - 8756-3282 .- 1873-2763. ; 59, s. 20-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fracture applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55 years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5 x 10(-8). In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p = 4.6 x 10(-8). However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% Cl: 0.98-1.14; p = 0.17), displaying high degree of heterogeneity (I-2= 57%; Q(het)p = 0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p = 0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures. (C) 2013 Elsevier Inc. All rights reserved.
  •  
3.
  • Kanis, J A, et al. (författare)
  • The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women.
  • 2007
  • Ingår i: Osteoporosis international. - : Springer. - 0937-941X .- 1433-2965. ; 18:8, s. 1033-46
  • Tidskriftsartikel (refereegranskat)abstract
    • SUMMARY: BMD and clinical risk factors predict hip and other osteoporotic fractures. The combination of clinical risk factors and BMD provide higher specificity and sensitivity than either alone. INTRODUCTION AND HYPOTHESES: To develop a risk assessment tool based on clinical risk factors (CRFs) with and without BMD. METHODS: Nine population-based studies were studied in which BMD and CRFs were documented at baseline. Poisson regression models were developed for hip fracture and other osteoporotic fractures, with and without hip BMD. Fracture risk was expressed as gradient of risk (GR, risk ratio/SD change in risk score). RESULTS: CRFs alone predicted hip fracture with a GR of 2.1/SD at the age of 50 years and decreased with age. The use of BMD alone provided a higher GR (3.7/SD), and was improved further with the combined use of CRFs and BMD (4.2/SD). For other osteoporotic fractures, the GRs were lower than for hip fracture. The GR with CRFs alone was 1.4/SD at the age of 50 years, similar to that provided by BMD (GR = 1.4/SD) and was not markedly increased by the combination (GR = 1.4/SD). The performance characteristics of clinical risk factors with and without BMD were validated in eleven independent population-based cohorts. CONCLUSIONS: The models developed provide the basis for the integrated use of validated clinical risk factors in men and women to aid in fracture risk prediction.
  •  
4.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture.
  • 2015
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-117
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
5.
  • Kaptoge, S., et al. (författare)
  • Whom to treat? The contribution of vertebral X-rays to risk-based algorithms for fracture prediction. Results from the European Prospective Osteoporosis Study
  • 2006
  • Ingår i: Osteoporosis International. - : Springer. - 1433-2965. ; 17:9, s. 1369-1381
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Vertebral fracture is a strong risk factor for future spine and hip fractures; yet recent data suggest that only 5-20% of subjects with a spine fracture are identified in primary care. We aimed to develop easily applicable algorithms predicting a high risk of future spine fracture in men and women over 50 years of age. Methods: Data was analysed from 5,561 men and women aged 50+ years participating in the European Prospective Osteoporosis Study (EPOS). Lateral thoracic and lumbar spine radiographs were taken at baseline and at an average of 3.8 years later. These were evaluated by an experienced radiologist. The risk of a new (incident) vertebral fracture was modelled as a function of age, number of prevalent vertebral fractures, height loss, sex and other fracture history reported by the subject, including limb fractures occurring between X-rays. Receiver Operating Characteristic (ROC) curves were used to compare the predictive ability of models. Results: In a negative binomial regression model without baseline X-ray data, the risk of incident vertebral fracture significantly increased with age [RR 1.74, 95% CI (1.44, 2.10) per decade], height loss [1.08 (1.04, 1.12) per cm decrease], female sex [1.48 (1.05, 2.09)], and recalled fracture history; [1.65 (1.15, 2.38) to 3.03 (1.66, 5.54)] according to fracture site. Baseline radiological assessment of prevalent vertebral fracture significantly improved the areas subtended by ROC curves from 0.71 (0.67, 0.74) to 0.74 (0.70, 0.77) P=0.013 for predicting 1+ incident fracture; and from 0.74 (0.67, 0.81) to 0.83 (0.76, 0.90) P=0.001 for 2+ incident fractures. Age, sex and height loss remained independently predictive. The relative risk of a new vertebral fracture increased with the number of prevalent vertebral fractures present from 3.08 (2.10, 4.52) for 1 fracture to 9.36 (5.72, 15.32) for 3+. At a specificity of 90%, the model including X-ray data improved the sensitivity for predicting 2+ and 1+ incident fractures by 6 and 4 fold respectively compared with random guessing. At 75% specificity the improvements were 3.2 and 2.4 fold respectively. With the modelling restricted to the subjects who had BMD measurements (n=2,409), the AUC for predicting 1+ vs. 0 incident vertebral fractures improved from 0.72 (0.66, 0.79) to 0.76 (0.71, 0.82) upon adding femoral neck BMD (P=0.010). Conclusion: We conclude that for those with existing vertebral fractures, an accurately read spine X-ray will form a central component in future algorithms for targeting treatment, especially to the most vulnerable. The sensitivity of this approach to identifying vertebral fracture cases requiring anti-osteoporosis treatment, even when X-rays are ordered highly selectively, exceeds by a large margin the current standard of practice as recorded anywhere in the world.
  •  
6.
  •  
7.
  • Armbrecht, Gabriele, et al. (författare)
  • Degenerative inter-vertebral disc disease osteochondrosis intervertebralis in Europe : Prevalence, geographic variation and radiological correlates in men and women aged 50 and over
  • Ingår i: Rheumatology. - : Oxford University Press. - 1462-0324. ; 56:7, s. 1189-1199
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives. To assess the prevalences across Europe of radiological indices of degenerative inter-vertebral disc disease (DDD); and to quantify their associations with, age, sex, physical anthropometry, areal BMD (aBMD) and change in aBMD with time. Methods. In the population-based European Prospective Osteoporosis Study, 27 age-stratified samples of men and women from across the continent aged 50+ years had standardized lateral radiographs of the lumbar and thoracic spine to evaluate the severity of DDD, using the Kellgren-Lawrence (KL) scale. Measurements of anterior, mid-body and posterior vertebral heights on all assessed vertebrae from T4 to L4 were used to generate indices of end-plate curvature. Results. Images from 10 132 participants (56% female, mean age 63.9 years) passed quality checks. Overall, 47% of men and women had DDD grade 3 or more in the lumbar spine and 36% in both thoracic and lumbar spine. Risk ratios for DDD grades 3 and 4, adjusted for age and anthropometric determinants, varied across a three-fold range between centres, yet prevalences were highly correlated in men and women. DDD was associated with flattened, non-ovoid inter-vertebral disc spaces. KL grade 4 and loss of inter-vertebral disc space were associated with higher spine aBMD. Conclusion. KL grades 3 and 4 are often used clinically to categorize radiological DDD. Highly variable European prevalences of radiologically defined DDD grades 3+ along with the large effects of age may have growing and geographically unequal health and economic impacts as the population ages. These data encourage further studies of potential genetic and environmental causes.
  •  
8.
  • Morris, John A, et al. (författare)
  • An atlas of genetic influences on osteoporosis in humans and mice.
  • 2019
  • Ingår i: Nature genetics. - 1546-1718. ; 51, s. 258-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral density (BMD). We assessed genetic determinants of BMD as estimated by heel quantitative ultrasound in 426,824 individuals, identifying 518 genome-wide significant loci (301 novel), explaining 20% of its variance. We identified 13 bone fracture loci, all associated with estimated BMD (eBMD), in ~1.2 million individuals. We then identified target genes enriched for genes known to influence bone density and strength (maximum odds ratio (OR) = 58, P = 1 × 10-75) from cell-specific features, including chromatin conformation and accessible chromatin sites. We next performed rapid-throughput skeletal phenotyping of 126 knockout mice with disruptions in predicted target genes and found an increased abnormal skeletal phenotype frequency compared to 526 unselected lines (P < 0.0001). In-depth analysis of one gene, DAAM2, showed a disproportionate decrease in bone strength relative to mineralization. This genetic atlas provides evidence linking associated SNPs to causal genes, offers new insight into osteoporosis pathophysiology, and highlights opportunities for drug development.
  •  
9.
  • Armbrecht, G., et al. (författare)
  • Vertebral Scheuermann's disease in Europe: prevalence, geographic variation and radiological correlates in men and women aged 50 and over
  • 2015
  • Ingår i: Osteoporosis International. - : Springer. - 1433-2965. ; 26:10, s. 2509-2519
  • Tidskriftsartikel (refereegranskat)abstract
    • The Summary In 27 centres across Europe, the prevalence of deforming spinal Scheuermann's disease in age-stratified population-based samples of over 10,000 men and women aged 50+ averaged 8 % in each sex, but was highly variable between centres. Low DXA BMD was un-associated with Scheuermann's, helping the differential diagnosis from osteoporosis. Introduction This study aims to assess the prevalence of Scheuermann's disease of the spine across Europe in men and women over 50 years of age, to quantitate its association with bone mineral density (BMD) and to assess its role as a confounder for the radiographic diagnosis of osteoporotic fracture. Methods In 27 centres participating in the population-based European Vertebral Osteoporosis Study (EVOS), standardised lateral radiographs of the lumbar and of the thoracic spine from T4 to L4 were assessed in all those of adequate quality. The presence of Scheuermann's disease, a confounder for prevalent fracture in later life, was defined by the presence of at least one Schmorl's node or irregular endplate together with kyphosis (sagittal Cobb angle > 40A degrees between T4 and T12) or a wedged-shaped vertebral body. Alternatively, the (rare) Edgren-Vaino sign was taken as diagnostic. The 6-point-per-vertebral-body (13 vertebrae) method was used to assess osteoporotic vertebral shape and fracture caseness. DXA BMD of the L2-L4 and femoral neck regions was measured in subsets. We also assessed the presence of Scheuermann's by alternative published algorithms when these used the radiographic signs we assessed. Results Vertebral radiographic images from 4486 men and 5655 women passed all quality checks. Prevalence of Scheuermann's varied considerably between centres, and based on random effect modelling, the overall European prevalence using our method was 8 % with no significant difference between sexes. The highest prevalences were seen in Germany, Sweden, the UK and France and low prevalences were seen in Hungary, Poland and Slovakia. Centre-level prevalences in men and women were highly correlated. Scheuermann's was not associated with BMD of the spine or hip. Conclusions Since most of the variation in population impact of Scheuermann's was unaccounted for by the radiological and anthropometric data, the search for new genetic and environmental determinants of this disease is encouraged.
  •  
10.
  • Kanis, J A, et al. (författare)
  • A family history of fracture and fracture risk: a meta-analysis.
  • 2004
  • Ingår i: Bone. - : Elsevier. - 8756-3282 .- 1873-2763. ; 35:5, s. 1029-37
  • Tidskriftsartikel (refereegranskat)abstract
    • The aims of the present study were to determine whether a parental history of any fracture or hip fracture specifically are significant risk factors for future fracture in an international setting, and to explore the effects of age, sex and bone mineral density (BMD) on this risk. We studied 34,928 men and women from seven prospectively studied cohorts followed for 134,374 person-years. The cohorts comprised the EPOS/EVOS study, CaMos, the Rotterdam Study, DOES and cohorts at Sheffield, Rochester and Gothenburg. The effect of family history of osteoporotic fracture or of hip fracture in first-degree relatives, BMD and age on all clinical fracture, osteoporotic fracture and hip fracture risk alone was examined using Poisson regression in each cohort and for each sex. The results of the different studies were merged from the weighted beta coefficients. A parental history of fracture was associated with a modest but significantly increased risk of any fracture, osteoporotic fracture and hip fracture in men and women combined. The risk ratio (RR) for any fracture was 1.17 (95% CI=1.07-1.28), for any osteoporotic fracture was 1.18 (95% CI=1.06-1.31), and for hip fracture was 1.49 (95% CI=1.17-1.89). The risk ratio was higher at younger ages but not significantly so. No significant difference in risk was seen between men and women with a parental history for any fracture (RR=1.17 and 1.17, respectively) or for an osteoporotic fracture (RR=1.17 and 1.18, respectively). For hip fracture, the risk ratios were somewhat higher, but not significantly higher, in men than in women (RR=2.02 and 1.38, respectively). A family history of hip fracture in parents was associated with a significant risk both of all osteoporotic fracture (RR 1.54; 95CI=1.25-1.88) and of hip fracture (RR=2.27; 95% CI=1.47-3.49). The risk was not significantly changed when BMD was added to the model. We conclude that a parental history of fracture (particularly a family history of hip fracture) confers an increased risk of fracture that is independent of BMD. Its identification on an international basis supports the use of this risk factor in case-finding strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 41
  • [1]2345Nästa
Typ av publikation
tidskriftsartikel (41)
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt (2)
Författare/redaktör
Reeve, J. (19)
Johnell, Olof (14)
Reeve, Jonathan (14)
Uitterlinden, Andre ... (13)
Mellström, Dan, 1945 (12)
van Schoor, Natasja ... (12)
visa fler...
Ralston, Stuart H (11)
Rivadeneira, Fernand ... (11)
van Meurs, Joyce B. ... (11)
Kiel, Douglas P. (10)
Kanis, JA (10)
Pols, Huibert A P (10)
Odén, Anders, 1942 (9)
Reid, David M (9)
Kanis, J A (9)
Johansson, Helena, 1 ... (9)
De Laet, C (9)
Ioannidis, John P. A ... (9)
Cooper, C. (8)
Eisman, John A (8)
Oden, A (8)
Richards, J. Brent (8)
Silman, A (8)
Medina-Gomez, Caroli ... (8)
Tenenhouse, A. (8)
Lips, Paul (8)
Johansson, H (7)
Johnell, O. (7)
Mellstrom, D. (7)
Karasik, David (7)
Obermayer-Pietsch, B ... (7)
Fujiwara, S. (7)
Kruk, Marcin (7)
Lewis, Joshua R (7)
Riancho, José A (7)
Hofman, Albert (6)
Poor, G. (6)
Eisman, JA (6)
Hsu, Yi-Hsiang (6)
Kaptoge, Stephen K. (6)
Felsenberg, D. (6)
Evans, David M (6)
Duncan, Emma L. (6)
Brown, Matthew A. (6)
Scollen, Serena (6)
Eisman, J.A. (6)
Melton, LJ (6)
Husted, Lise Bjerre (6)
Olmos, José M (6)
Rousseau, François (6)
visa färre...
Lärosäte
Lunds universitet (25)
Göteborgs universitet (20)
Uppsala universitet (4)
Umeå universitet (2)
Karolinska Institutet (2)
Stockholms universitet (1)
visa fler...
Linköpings universitet (1)
Högskolan i Halmstad (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (41)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (27)
Naturvetenskap (5)
Teknik (1)
Samhällsvetenskap (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy