SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reeve J) ;pers:(Mellström Dan 1945)"

Sökning: WFRF:(Reeve J) > Mellström Dan 1945

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Oei, L., et al. (författare)
  • Genome-wide association study for radiographic vertebral fractures: A potential role for the 16q24 BMD locus
  • 2014
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 59, s. 20-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fracture applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55 years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5 x 10(-8). In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p = 4.6 x 10(-8). However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% Cl: 0.98-1.14; p = 0.17), displaying high degree of heterogeneity (I-2= 57%; Q(het)p = 0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p = 0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures. (C) 2013 Elsevier Inc. All rights reserved.
  •  
2.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
3.
  •  
4.
  • Kanis, J A, et al. (författare)
  • A family history of fracture and fracture risk: a meta-analysis.
  • 2004
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 35:5, s. 1029-37
  • Tidskriftsartikel (refereegranskat)abstract
    • The aims of the present study were to determine whether a parental history of any fracture or hip fracture specifically are significant risk factors for future fracture in an international setting, and to explore the effects of age, sex and bone mineral density (BMD) on this risk. We studied 34,928 men and women from seven prospectively studied cohorts followed for 134,374 person-years. The cohorts comprised the EPOS/EVOS study, CaMos, the Rotterdam Study, DOES and cohorts at Sheffield, Rochester and Gothenburg. The effect of family history of osteoporotic fracture or of hip fracture in first-degree relatives, BMD and age on all clinical fracture, osteoporotic fracture and hip fracture risk alone was examined using Poisson regression in each cohort and for each sex. The results of the different studies were merged from the weighted beta coefficients. A parental history of fracture was associated with a modest but significantly increased risk of any fracture, osteoporotic fracture and hip fracture in men and women combined. The risk ratio (RR) for any fracture was 1.17 (95% CI=1.07-1.28), for any osteoporotic fracture was 1.18 (95% CI=1.06-1.31), and for hip fracture was 1.49 (95% CI=1.17-1.89). The risk ratio was higher at younger ages but not significantly so. No significant difference in risk was seen between men and women with a parental history for any fracture (RR=1.17 and 1.17, respectively) or for an osteoporotic fracture (RR=1.17 and 1.18, respectively). For hip fracture, the risk ratios were somewhat higher, but not significantly higher, in men than in women (RR=2.02 and 1.38, respectively). A family history of hip fracture in parents was associated with a significant risk both of all osteoporotic fracture (RR 1.54; 95CI=1.25-1.88) and of hip fracture (RR=2.27; 95% CI=1.47-3.49). The risk was not significantly changed when BMD was added to the model. We conclude that a parental history of fracture (particularly a family history of hip fracture) confers an increased risk of fracture that is independent of BMD. Its identification on an international basis supports the use of this risk factor in case-finding strategies.
  •  
5.
  • Kanis, J A, et al. (författare)
  • The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women.
  • 2007
  • Ingår i: Osteoporosis international. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 18:8, s. 1033-46
  • Tidskriftsartikel (refereegranskat)abstract
    • SUMMARY: BMD and clinical risk factors predict hip and other osteoporotic fractures. The combination of clinical risk factors and BMD provide higher specificity and sensitivity than either alone. INTRODUCTION AND HYPOTHESES: To develop a risk assessment tool based on clinical risk factors (CRFs) with and without BMD. METHODS: Nine population-based studies were studied in which BMD and CRFs were documented at baseline. Poisson regression models were developed for hip fracture and other osteoporotic fractures, with and without hip BMD. Fracture risk was expressed as gradient of risk (GR, risk ratio/SD change in risk score). RESULTS: CRFs alone predicted hip fracture with a GR of 2.1/SD at the age of 50 years and decreased with age. The use of BMD alone provided a higher GR (3.7/SD), and was improved further with the combined use of CRFs and BMD (4.2/SD). For other osteoporotic fractures, the GRs were lower than for hip fracture. The GR with CRFs alone was 1.4/SD at the age of 50 years, similar to that provided by BMD (GR = 1.4/SD) and was not markedly increased by the combination (GR = 1.4/SD). The performance characteristics of clinical risk factors with and without BMD were validated in eleven independent population-based cohorts. CONCLUSIONS: The models developed provide the basis for the integrated use of validated clinical risk factors in men and women to aid in fracture risk prediction.
  •  
6.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
7.
  • Kanis, J A, et al. (författare)
  • A meta-analysis of previous fracture and subsequent fracture risk.
  • 2004
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 35:2, s. 375-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous fracture is a well-documented risk factor for future fracture. The aim of this study was to quantify this risk on an international basis and to explore the relationship of this risk with age, sex, and bone mineral density (BMD). We studied 15259 men and 44902 women from 11 cohorts comprising EVOS/EPOS, OFELY, CaMos, Rochester, Sheffield, Rotterdam, Kuopio, DOES, Hiroshima, and two cohorts from Gothenburg. Cohorts were followed for a total of 250000 person-years. The effect of a prior history of fracture on the risk of any fracture, any osteoporotic fracture, and hip fracture alone was examined using a Poisson model for each sex from each cohort. Covariates examined were age, sex, and BMD. The results of the different studies were merged by using the weighted beta-coefficients. A previous fracture history was associated with a significantly increased risk of any fracture compared with individuals without a prior fracture (RR = 1.86; 95% CI = 1.75-1.98). The risk ratio was similar for the outcome of osteoporotic fracture or for hip fracture. There was no significant difference in risk ratio between men and women. Risk ratio (RR) was marginally downward adjusted when account was taken of BMD. Low BMD explained a minority of the risk for any fracture (8%) and for hip fracture (22%). The risk ratio was stable with age except in the case of hip fracture outcome where the risk ratio decreased significantly with age. We conclude that previous history of fracture confers an increased risk of fracture of substantial importance beyond that explained by measurement of BMD. Its validation on an international basis permits the use of this risk factor in case finding strategies.
  •  
8.
  • Kanis, J A, et al. (författare)
  • Smoking and fracture risk: a meta-analysis.
  • 2005
  • Ingår i: Osteoporosis international. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 16:2, s. 155-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Smoking is widely considered a risk factor for future fracture. The aim of this study was to quantify this risk on an international basis and to explore the relationship of this risk with age, sex and bone mineral density (BMD). We studied 59,232 men and women (74% female) from ten prospective cohorts comprising EVOS/EPOS, DOES, CaMos, Rochester, Sheffield, Rotterdam, Kuopio, Hiroshima and two cohorts from Gothenburg. Cohorts were followed for a total of 250,000 person-years. The effect of current or past smoking, on the risk of any fracture, any osteoporotic fracture and hip fracture alone was examined using a Poisson model for each sex from each cohort. Covariates examined were age, sex and BMD. The results of the different studies were merged using the weighted beta-coefficients. Current smoking was associated with a significantly increased risk of any fracture compared to non-smokers (RR=1.25; 95% Confidence Interval (CI)=1.15-1.36). Risk ratio (RR) was adjusted marginally downward when account was taken of BMD, but it remained significantly increased (RR=1.13). For an osteoporotic fracture, the risk was marginally higher (RR=1.29; 95% CI=1.13-1.28). The highest risk was observed for hip fracture (RR=1.84; 95% CI=1.52-2.22), but this was also somewhat lower after adjustment for BMD (RR=1.60; 95% CI=1.27-2.02). Risk ratios were significantly higher in men than in women for all fractures and for osteoporotic fractures, but not for hip fracture. Low BMD accounted for only 23% of the smoking-related risk of hip fracture. Adjustment for body mass index had a small downward effect on risk for all fracture outcomes. For osteoporotic fracture, the risk ratio increased with age, but decreased with age for hip fracture. A smoking history was associated with a significantly increased risk of fracture compared with individuals with no smoking history, but the risk ratios were lower than for current smoking. We conclude that a history of smoking results in fracture risk that is substantially greater than that explained by measurement of BMD. Its validation on an international basis permits the use of this risk factor in case finding strategies.
  •  
9.
  • Moayyeri, Alireza, et al. (författare)
  • Genetic determinants of heel bone properties : genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:11, s. 3054-3068
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 x 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 x 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 x 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology.
  •  
10.
  • Johnell, Olof, et al. (författare)
  • Predictive value of BMD for hip and other fractures.
  • 2005
  • Ingår i: Journal of bone and mineral research. - 0884-0431 .- 1523-4681. ; 20:7, s. 1185-94
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between BMD and fracture risk was estimated in a meta-analysis of data from 12 cohort studies of approximately 39,000 men and women. Low hip BMD was an important predictor of fracture risk. The prediction of hip fracture with hip BMD also depended on age and z score. INTRODUCTION: The aim of this study was to quantify the relationship between BMD and fracture risk and examine the effect of age, sex, time since measurement, and initial BMD value. MATERIALS AND METHODS: We studied 9891 men and 29,082 women from 12 cohorts comprising EVOS/EPOS, EPIDOS, OFELY, CaMos, Rochester, Sheffield, Rotterdam, Kuopio, DOES, Hiroshima, and 2 cohorts from Gothenburg. Cohorts were followed for up to 16.3 years and a total of 168,366 person-years. The effect of BMD on fracture risk was examined using a Poisson model in each cohort and each sex separately. Results of the different studies were then merged using weighted coefficients. RESULTS: BMD measurement at the femoral neck with DXA was a strong predictor of hip fractures both in men and women with a similar predictive ability. At the age of 65 years, risk ratio increased by 2.94 (95% CI = 2.02-4.27) in men and by 2.88 (95% CI = 2.31-3.59) in women for each SD decrease in BMD. However, the effect was dependent on age, with a significantly higher gradient of risk at age 50 years than at age 80 years. Although the gradient of hip fracture risk decreased with age, the absolute risk still rose markedly with age. For any fracture and for any osteoporotic fracture, the gradient of risk was lower than for hip fractures. At the age of 65 years, the risk of osteoporotic fractures increased in men by 1.41 per SD decrease in BMD (95% CI = 1.33-1.51) and in women by 1.38 per SD (95% CI = 1.28-1.48). In contrast with hip fracture risk, the gradient of risk increased with age. For the prediction of any osteoporotic fracture (and any fracture), there was a higher gradient of risk the lower the BMD. At a z score of -4 SD, the risk gradient was 2.10 per SD (95% CI = 1.63-2.71) and at a z score of -1 SD, the risk was 1.73 per SD (95% CI = 1.59-1.89) in men and women combined. A similar but less pronounced and nonsignificant effect was observed for hip fractures. Data for ultrasound and peripheral measurements were available from three cohorts. The predictive ability of these devices was somewhat less than that of DXA measurements at the femoral neck by age, sex, and BMD value. CONCLUSIONS: We conclude that BMD is a risk factor for fracture of substantial importance and is similar in both sexes. Its validation on an international basis permits its use in case finding strategies. Its use should, however, take account of the variations in predictive value with age and BMD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy