SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reilly M) ;lar1:(gu)"

Sökning: WFRF:(Reilly M) > Göteborgs universitet

  • Resultat 1-10 av 46
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ramdas, S., et al. (författare)
  • A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids
  • 2022
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 109:8, s. 1366-1387
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.
  •  
2.
  • Sliz, E., et al. (författare)
  • Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.
  •  
3.
  •  
4.
  •  
5.
  • Chelban, V., et al. (författare)
  • PDXK mutations cause polyneuropathy responsive to pyridoxal 5′-phosphate supplementation
  • 2019
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 86:2, s. 225-240
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. Methods: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. Results: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5′-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. Interpretation: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225–240. © 2019 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.
  •  
6.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
7.
  • Pagnamenta, A. T., et al. (författare)
  • An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144, s. 584-600
  • Tidskriftsartikel (refereegranskat)abstract
    • The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose 47000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 +/- 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.
  •  
8.
  • Kapoor, M., et al. (författare)
  • Plasma neurofilament light chain concentration is increased and correlates with the severity of neuropathy in hereditary transthyretin amyloidosis
  • 2019
  • Ingår i: Journal of the Peripheral Nervous System. - : Wiley. - 1085-9489 .- 1529-8027. ; 24:4, s. 314-319
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereditary transthyretin amyloidosis (ATTRm) causes a disabling peripheral neuropathy as part of a multisystem disorder. The recent development of highly effective gene silencing therapies has highlighted the need for effective biomarkers of disease activity to guide the decision of when to start and stop treatment. In this study, we measured plasma neurofilament light chain (pNfL) concentration in 73 patients with ATTR and found that pNfL was significantly raised in ATTRm patients with peripheral neuropathy compared to healthy controls. Furthermore, pNFL correlated with disease severity as defined by established clinical outcome measures in patients for whom this information was available. These findings suggest a potential role of pNfL in monitoring disease activity and progression in ATTRm patients.
  •  
9.
  • Scott, G. D., et al. (författare)
  • Fluid and Tissue Biomarkers of Lewy Body Dementia: Report of an LBDA Symposium
  • 2022
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The Lewy Body Dementia Association (LBDA) held a virtual event, the LBDA Biofluid/Tissue Biomarker Symposium, on January 25, 2021, to present advances in biomarkers for Lewy body dementia (LBD), which includes dementia with Lewy bodies (DLBs) and Parkinson's disease dementia (PDD). The meeting featured eight internationally known scientists from Europe and the United States and attracted over 200 scientists and physicians from academic centers, the National Institutes of Health, and the pharmaceutical industry. Methods for confirming and quantifying the presence of Lewy body and Alzheimer's pathology and novel biomarkers were discussed.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 46

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy