SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renne T) ;pers:(Hedin U)"

Sökning: WFRF:(Renne T) > Hedin U

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dusart, Philip, et al. (författare)
  • A systems-approach reveals human nestin is an endothelial-enriched, angiogenesis-independent intermediate filament protein
  • 2018
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The intermediate filament protein nestin is expressed during embryonic development, but considered largely restricted to areas of regeneration in the adult. Here, we perform a body-wide transcriptome and protein-profiling analysis to reveal that nestin is constitutively, and highly-selectively, expressed in adult human endothelial cells (EC), independent of proliferative status. Correspondingly, we demonstrate that it is not a marker for tumour EC in multiple malignancy types. Imaging of EC from different vascular beds reveals nestin subcellular distribution is shear-modulated. siRNA inhibition of nestin increases EC proliferation, and nestin expression is reduced in atherosclerotic plaque neovessels. eQTL analysis reveals an association between SNPs linked to cardiovascular disease and reduced aortic EC nestin mRNA expression. Our study challenges the dogma that nestin is a marker of proliferation, and provides insight into its regulation and function in EC. Furthermore, our systems-based approach can be applied to investigate body-wide expression profiles of any candidate protein. 
  •  
2.
  •  
3.
  • Österholm, C., et al. (författare)
  • Increased expression of heparanase in symptomatic carotid atherosclerosis
  • 2013
  • Ingår i: Atherosclerosis. - : Elsevier BV. - 0021-9150 .- 1879-1484. ; 226:1, s. 67-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Proliferation of smooth muscle cells (SMCs) can stabilize atherosclerotic lesions but the molecular mechanisms that regulate this process in humans are largely unknown. We have previously shown that heparan sulfate proteoglycans (HSPGs), such as perlecan, regulate SMC growth in animal models by modulating heparin-binding mitogens. Since perlecan is expressed at low levels in human atherosclerosis, we speculated that the effect of heparan sulfate (HS) in human disease was rather influenced by HS degradation and investigated the expression of heparanase (HPSE) in human carotid endarterectomies. Methods and results: Gene expression analysis from 127 endarterectomies in the BiKE database revealed increased expression of HPSE in carotid plaques compared with normal arteries, and a further elevation in symptomatic lesions. Increased HPSE protein expression in symptomatic plaque tissue was verified by tissue microarrays. HPSE mRNA levels correlated positively with expression of inflammatory markers IL-18, RANTES and IL-1β, and also T-cell co-stimulatory molecules, such as B7.2, CD28, LFA-1 and 4-1BB. Previously reported single nucleotide polymorphisms within HPSE were associated with differential mRNA expression in plaques. Immunohistochemistry revealed that inflammatory cells were major producers of HPSE in plaque tissue. HPSE immunoreactivity was also observed in SMCs adjacent to the necrotic core and was co-localized to deposits of fibrin. Conclusions: This study demonstrates increased expression of HPSE in human atherosclerosis associated with inflammation, coagulation and plaque instability. Since HS can regulate SMC proliferation and influence plaque stability, the findings suggest that HPSE degradation of HS take part in the regulation of SMC function in human atherosclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy