SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Renno Nilton) "

Sökning: WFRF:(Renno Nilton)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Gõmez-Elvira, Javier, et al. (författare)
  • Curiosity's rover environmental monitoring station : Overview of the first 100 sols
  • 2014
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 119:7, s. 1680-1688
  • Tidskriftsartikel (refereegranskat)abstract
    • In the first 100 Martian solar days (sols) of the Mars Science Laboratory mission, the Rover Environmental Monitoring Station (REMS) measured the seasonally evolving diurnal cycles of ultraviolet radiation, atmospheric pressure, air temperature, ground temperature, relative humidity, and wind within Gale Crater on Mars. As an introduction to several REMS-based articles in this issue, we provide an overview of the design and performance of the REMS sensors and discuss our approach to mitigating some of the difficulties we encountered following landing, including the loss of one of the two wind sensors. We discuss the REMS data set in the context of other Mars Science Laboratory instruments and observations and describe how an enhanced observing strategy greatly increased the amount of REMS data returned in the first 100 sols, providing complete coverage of the diurnal cycle every 4 to 6 sols. Finally, we provide a brief overview of key science results from the first 100 sols. We found Gale to be very dry, never reaching saturation relative humidities, subject to larger diurnal surface pressure variations than seen by any previous lander on Mars, air temperatures consistent with model predictions and abundant short timescale variability, and surface temperatures responsive to changes in surface properties and suggestive of subsurface layering. Key Points Introduction to the REMS results on MSL mission Overiview of the sensor information Overview of operational constraints
  •  
3.
  •  
4.
  • Martin-Torres, Javier, et al. (författare)
  • Transient liquid water and water activity at Gale crater on Mars
  • 2015
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 8:5, s. 357-361
  • Tidskriftsartikel (refereegranskat)abstract
    • Water is a requirement for life as we know it1. Indirect evidence of transient liquid water has been observed from orbiter on equatorial Mars2, in contrast with expectations from large-scale climate models. The presence of perchlorate salts, which have been detected at Gale crater on equatorial Mars by the Curiosity rover3, 4, lowers the freezing temperature of water5. Moreover, perchlorates can form stable hydrated compounds and liquid solutions by absorbing atmospheric water vapour through deliquescence6, 7. Here we analyse relative humidity, air temperature and ground temperature data from the Curiosity rover at Gale crater and find that the observations support the formation of night-time transient liquid brines in the uppermost 5 cm of the subsurface that then evaporate after sunrise. We also find that changes in the hydration state of salts within the uppermost 15 cm of the subsurface, as measured by Curiosity, are consistent with an active exchange of water at the atmosphere–soil interface. However, the water activity and temperature are probably too low to support terrestrial organisms8. Perchlorates are widespread on the surface of Mars9 and we expect that liquid brines are abundant beyond equatorial regions where atmospheric humidity is higher and temperatures are lower.
  •  
5.
  •  
6.
  • Moores, John E., et al. (författare)
  • Atmospheric movies acquired at the Mars Science Laboratory landing site : Cloud Morphology, Frequency and Significance to the Gale Crater Water Cycle and Phoenix Mission Results
  • 2015
  • Ingår i: Advances in Space Research. - 0273-1177 .- 1879-1948. ; 55:9, s. 2217-2238
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the first 360 sols (LS 150° to 5°), representing just over half a Martian year, of atmospheric monitoring movies acquired using the NavCam imager from the Mars Science Laboratory (MSL) Rover Curiosity. Such movies reveal faint clouds that are difficult to discern in single images. The data set acquired was divided into two different classifications depending upon the orientation and intent of the observation. Up to sol 360, 73 Zenith Movies and 79 Supra-Horizon Movies have been acquired and time-variable features could be discerned in 25 of each. The data set from MSL is compared to similar observations made by the Surface Stereo Imager (SSI) onboard the Phoenix Lander and suggests a much drier environment at Gale Crater (4.6°S) during this season than was observed in Green Valley (68.2°N) as would be expected based on latitude and the global water cycle. The optical depth of the variable component of clouds seen in images with features are up to 0.047 ± 0.009 with a granularity to the features observed which averages 3.8 degrees. MCS also observes clouds during the same period of comparable optical depth at 30 and 50 km that would suggest a cloud spacing of 2.0 to 3.3 km. Multiple motions visible in atmospheric movies support the presence of two distinct layers of clouds. At Gale Crater, these clouds are likely caused by atmospheric waves given the regular spacing of features observed in many Zenith movies and decreased spacing towards the horizon in sunset movies consistent with clouds forming at a constant elevation. Reanalysis of Phoenix data in the light of the NavCam equatorial dataset suggests that clouds may have been more frequent in the earlier portion of the Phoenix mission than was previously thought.
  •  
7.
  • Moores, John E., et al. (författare)
  • Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover
  • 2015
  • Ingår i: Icarus (New York, N.Y. 1962). - 0019-1035 .- 1090-2643. ; 249, s. 129-142
  • Tidskriftsartikel (refereegranskat)abstract
    • The Navigation Cameras (Navcam) of the Mars Science Laboratory rover, Curiosity, have been used to examine two aspects of the planetary boundary layer: vertical dust distribution and dust devil frequency. The vertical distribution of dust may be obtained by using observations of the distant crater rim to derive a line-of-sight optical depth within Gale Crater and comparing this optical depth to column optical depths obtained using Mastcam observations of the solar disc. The line of sight method consistently produces lower extinctions within the crater compared to the bulk atmosphere. This suggests a relatively stable atmosphere in which dust may settle out leaving the air within the crater clearer than air above and explains the correlation in observed column opacity between the floor of Gale Crater and the higher elevation Meridiani Planum. In the case of dust devils, despite an extensive campaign only one optically thick vortex (τ=1.5±0.5×10-3) was observed compared to 149 pressure events > 0.5Pa observed in REMS pressure data. Correcting for temporal coverage by REMS and geographic coverage by Navcam still suggests 104 vortices should have been viewable, suggesting that most vortices are dustless. Additionally, the most intense pressure excursions observed on other landing sites (pressure drop >2.5Pa) are lacking from the observations by the REMS instrument. Taken together, these observations are consistent with pre-landing circulation modeling of the crater showing a suppressed, shallow boundary layer. They are further consistent with geological observations of dust that suggests the northern portion of the crater is a sink for dust in the current era.
  •  
8.
  • Rennó, Nilton O., et al. (författare)
  • Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site
  • 2009
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 114:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of the Phoenix mission is to determine if Mars' polar region can support life. Since liquid water is a basic ingredient for life, as we know it, an important goal of the mission is to determine if liquid water exists at the landing site. It is believed that a layer of Martian soil preserves ice by forming a barrier against high temperatures and sublimation, but that exposed ice sublimates without the formation of the liquid phase. Here we show possible independent physical and thermodynamical evidence that besides ice, liquid saline water exists in areas disturbed by the Phoenix Lander. Moreover, we show that the thermodynamics of freeze-thaw cycles can lead to the formation of saline solutions with freezing temperatures lower than current summer ground temperatures on the Phoenix landing site on Mars' Arctic. Thus, we hypothesize that liquid saline water might occur where ground ice exists near the Martian surface. The ideas and results presented in this article provide significant new insights into the behavior of water on Mars.
  •  
9.
  • Zorzano, María Paz, et al. (författare)
  • Stability of liquid saline water on present day Mars
  • 2009
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 36:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Perchlorate salts (mostly magnesium and sodium perchlorate) have been detected on Mars' arctic soil by the Phoenix lander, furthermore chloride salts have been found on the Meridiani and Gusev sites and on widespread deposits on the southern Martian hemisphere. The presence of these salts on the surface is not only relevant because of their ability to lower the freezing point of water, but also because they can absorb water vapor and form a liquid solution (deliquesce). We show experimentally that small amounts of sodium perchlorate (∼ 1 mg), at Mars atmospheric conditions, spontaneously absorb moisture and melt into a liquid solution growing into ∼ 1 mm liquid spheroids at temperatures as low as 225 K. Also mixtures of water ice and sodium perchlorate melt into a liquid at this temperature. Our results indicate that salty environments make liquid water to be locally and sporadically stable on present day Mars.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy