Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Reuman Daniel C.) "

Sökning: WFRF:(Reuman Daniel C.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
  • O'Gorman, Eoin J., et al. (författare)
  • Impacts of Warming on the Structure and Functioning of Aquatic Communities : Individual-to Ecosystem-Level Responses
  • 2012
  • Ingår i: Advances in Ecological Research, Vol 47. - : Elsevier. - 9780123983152 ; , s. 81-176
  • Bokkapitel (refereegranskat)abstract
    • Environmental warming is predicted to rise dramatically over the next century, yet few studies have investigated its effects in natural, multi-species systems. We present data collated over an 8-year period from a catchment of geothermally heated streams in Iceland, which acts as a natural experiment on the effects of warming across different organisational levels and spatiotemporal scales. Body sizes and population biomasses of individual species responded strongly to temperature, with some providing evidence to support temperature size rules. Macroinvertebrate and meiofaunal community composition also changed dramatically across the thermal gradient. Interactions within the warm streams in particular were characterised by food chains linking algae to snails to the apex predator, brown trout These chains were missing from the colder systems, where snails were replaced by much smaller herbivores and invertebrate omnivores were the top predators. Trout were also subsidised by terrestrial invertebrate prey, which could have an effect analogous to apparent competition within the aquatic prey assemblage. Top-down effects by snails on diatoms were stronger in the warmer streams, which could account for a shallowing of mass-abundance slopes across the community. This may indicate reduced energy transfer efficiency from resources to consumers in the warmer systems and/or a change in predator-prey mass ratios. All the ecosystem process rates investigated increased with temperature, but with differing thermal sensitivities, with important implications for overall ecosystem functioning (e.g. creating potential imbalances in elemental fluxes). Ecosystem respiration rose rapidly with temperature, leading to increased heterotrophy. There were also indications that food web stability may be lower in the warmer streams.
  • Bowes, Rachel E., et al. (författare)
  • Multidimensional metrics of niche space for use with diverse analytical techniques
  • 2017
  • Ingår i: Scientific Reports. - : Springer. - 2045-2322. ; 7, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Multidimensional data are integral to many community-ecological studies and come in various forms, such as stable isotopes, compound specific analyses (e.g., amino acids and fatty acids), and both biodiversity and life history traits. Scientists employing such data often lack standardized metrics to evaluate communities in niche space where more than 2 dimensions are involved. To alleviate this problem, we developed a graphing and analytical approach for use with more than two variables, based on previously established stable isotope bi-plot metrics. We introduce here our community metrics as R scripts. By extending the original metrics to multiple dimensions, we created n-dimensional plots and metrics to characterize any set of quantitative measurements of a community. We demonstrate the utility of these metrics using stable isotope data; however, the approaches are applicable to many types of data. The resulting metrics provide more and better information compared to traditional analytic frameworks. The approach can be applied in many branches of community ecology, and it offers accessible metrics to quantitatively analyze the structure of communities across ecosystems and through time.
  • Yvon-Durocher, Gabriel, et al. (författare)
  • Across ecosystem comparisons of size structure: methods, approaches and prospects
  • 2011
  • Ingår i: OIKOS. - : Nordic Ecological Society. - 0030-1299. ; 120:4, s. 550-563
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding how ecological communities are structured and how this may vary between different types of ecosystems is a fundamental question in ecology. We develop a general framework for quantifying size-structure within and among different ecosystem types (e. g. terrestrial, freshwater or marine), via the use of a suite of bivariate relationships between organismal size and properties of individuals, populations, assemblages, pair-wise interactions, and network topology. Each of these relationships can be considered a dimension of size-structure, along which real communities lie on a continuous scale. For example, the strength, slope, or elevation of the body mass-versus-abundance or predator size-versus-prey size relationships may vary systematically among ecosystem types. We draw on examples from the literature and suggest new ways to use allometries for comparing among ecosystem types, which we illustrate by applying them to published data. Finally, we discuss how dimensions of size-structure are interconnected and how we could approach this complex hierarchy systematically. We conclude: (1) there are multiple dimensions of size-structure; (2) communities may be size-structured in some of these dimensions, but not necessarily in others; (3) across-system comparisons via rigorous quantitative statistical methods are possible, and (4) insufficient data are currently available to illuminate thoroughly the full extent and nature of differences in size-structure among ecosystem types.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy