SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rice Gillian I) "

Sökning: WFRF:(Rice Gillian I)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
2.
  • Shungin, Dmitry, et al. (författare)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
3.
  • Anney, Richard, et al. (författare)
  • A genome-wide scan for common alleles affecting risk for autism.
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:20, s. 4072-4082
  • Tidskriftsartikel (refereegranskat)abstract
    • Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
  •  
4.
  • Pinto, Dalila, et al. (författare)
  • Functional impact of global rare copy number variation in autism spectrum disorders.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 466:7304, s. 368-372
  • Tidskriftsartikel (refereegranskat)abstract
    • The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
  •  
5.
  • Rice, Gillian I, et al. (författare)
  • Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease.
  • 2017
  • Ingår i: Neuropediatrics. - : Georg Thieme Verlag KG. - 1439-1899 .- 0174-304X. ; 48:3, s. 166-184
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1. The clinicoradiological phenotype encompassed a spectrum of Aicardi-Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64-25.71) compared with controls (median: 0.93, IQR: 0.57-1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context.
  •  
6.
  • Anderson, Beverley H., et al. (författare)
  • Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:3, s. 338-342
  • Tidskriftsartikel (refereegranskat)abstract
    • Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous gamma H2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the alpha-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-alpha primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.
  •  
7.
  • Livingston, John H, et al. (författare)
  • Leukoencephalopathy with Calcifications and Cysts : A Purely Neurological Disorder Distinct from Coats Plus
  • 2014
  • Ingår i: Neuropediatrics. - : Georg Thieme Verlag KG. - 0174-304X .- 1439-1899. ; 45:3, s. 175-182
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective With the identification of mutations in the conserved telomere maintenance component 1 (CTC1) gene as the cause of Coats plus (CP) disease, it has become evident that leukoencephalopathy with calcifications and cysts (LCC) is a distinct genetic entity. Patients and Methods A total of 15 patients with LCC were identified from our database of patients with intracranial calcification. The clinical and radiological features are described. Results The median age (range) at presentation was 10 months (range, 2 days-54 years). Of the 15 patients, 9 presented with epileptic seizures, 5 with motor abnormalities, and 1 with developmental delay. Motor abnormalities developed in 14 patients and cognitive problems in 13 patients. Dense calcification occurred in the basal ganglia, thalami, dentate nucleus, brain stem, deep gyri, deep white matter, and in a pericystic distribution. Diffuse leukoencephalopathy was present in all patients, and it was usually symmetrical involving periventricular, deep, and sometimes subcortical, regions. Cysts developed in the basal ganglia, thalamus, deep white matter, cerebellum, or brain stem. In unaffected areas, normal myelination was present. No patient demonstrated cerebral atrophy. Conclusion LCC shares the neuroradiological features of CP. However, LCC is a purely neurological disorder distinguished genetically by the absence of mutations in CTC1. The molecular cause(s) of LCC has (have) not yet been determined.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy