SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Richards J Brent) ;lar1:(ki)"

Sökning: WFRF:(Richards J Brent) > Karolinska Institutet

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Johansson, Mattias, et al. (författare)
  • The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study
  • 2019
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it is unclear which individual factors directly influence risk. We addressed this question using genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk in a mendelian randomization (MR) framework. This methodology limits bias due to confounding and is not affected by reverse causation.Methods and findings: Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin, and glucose were initially identified as instrumental variables, and their association with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of 10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation (SD) increment in each risk factor. The MR analysis indicated that higher body mass index increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44–1.70), with comparable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40–1.90) and body fat percentage (ORSD: 1.66, 95% CI 1.44–1.90). This analysis further indicated that higher fasting insulin (ORSD: 1.82, 95% CI 1.30–2.55) and diastolic blood pressure (DBP; ORSD: 1.28, 95% CI 1.11–1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84–1.14), increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2 diabetes, or fasting glucose.Conclusions: This study provides novel evidence for an etiological role of insulin in RCC, as well as confirmatory evidence that obesity and DBP influence RCC risk.
  •  
3.
  • Lu, Yingchang, et al. (författare)
  • New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
  •  
4.
  • Smith-Byrne, Karl, et al. (författare)
  • Identifying therapeutic targets for cancer among 2074 circulating proteins and risk of nine cancers
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.
  •  
5.
  • Cruz, Raquel, et al. (författare)
  • Novel genes and sex differences in COVID-19 severity
  • 2022
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 31:22, s. 3789-3806
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.
  •  
6.
  • Yoshiji, Satoshi, et al. (författare)
  • Proteome-wide Mendelian randomization implicates nephronectin as an actionable mediator of the effect of obesity on COVID-19 severity
  • 2023
  • Ingår i: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 5, s. 248-264
  • Tidskriftsartikel (refereegranskat)abstract
    • How obesity contributes to COVID-19 severity is not fully understood. In this study, Yoshiji et al. found that the plasma protein nephronectin partially mediates the effect of obesity on the risk of COVID-19 severity using a two-step Mendelian randomization approach and omics analyses. Obesity is a major risk factor for Coronavirus disease (COVID-19) severity; however, the mechanisms underlying this relationship are not fully understood. As obesity influences the plasma proteome, we sought to identify circulating proteins mediating the effects of obesity on COVID-19 severity in humans. Here, we screened 4,907 plasma proteins to identify proteins influenced by body mass index using Mendelian randomization. This yielded 1,216 proteins, whose effect on COVID-19 severity was assessed, again using Mendelian randomization. We found that an s.d. increase in nephronectin (NPNT) was associated with increased odds of critically ill COVID-19 (OR = 1.71, P = 1.63 x 10(-10)). The effect was driven by an NPNT splice isoform. Mediation analyses supported NPNT as a mediator. In single-cell RNA-sequencing, NPNT was expressed in alveolar cells and fibroblasts of the lung in individuals who died of COVID-19. Finally, decreasing body fat mass and increasing fat-free mass were found to lower NPNT levels. These findings provide actionable insights into how obesity influences COVID-19 severity.
  •  
7.
  • Brunet-Ratnasingham, Elsa, et al. (författare)
  • Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity.
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15:1, s. 4177-
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.
  •  
8.
  • Larsson, Susanna C., et al. (författare)
  • No clear support for a role for vitamin D in Parkinson's disease : A Mendelian randomization study.
  • 2017
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185 .- 1531-8257. ; 32:8, s. 1249-1252
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Observational studies have found that relative to healthy controls, patients with Parkinson's disease have lower circulating concentrations of 25-hydroxyvitamin D, a clinical biomarker of vitamin D status. However, the causality of this association is uncertain. We undertook a Mendelian randomization study to investigate whether genetically decreased 25-hydroxyvitamin D concentrations are associated with PD to minimize confounding and prevent bias because of reverse causation.METHODS: As instrumental variables for the Mendelian randomization analysis, we used 4 single-nucleotide polymorphisms that affect 25-hydroxyvitamin D concentrations (rs2282679 in GC, rs12785878 near DHCR7, rs10741657 near CYP2R1, and rs6013897 near CYP24A1). Summary effect size estimates of the 4 single-nucleotide polymorphisms on PD were obtained from the International Parkinson's Disease Genomics Consortium (including 5333 PD cases and 12,019 controls). The estimates of the 4 single-nucleotide polymorphisms were combined using an inverse-variance weighted meta-analysis.RESULTS: Of the 4 single-nucleotide polymorphisms associated with 25-hydroxyvitamin D concentrations, one (rs6013897 in CYP24A1) was associated with PD (odds ratio per 25-hydroxyvitamin D-decreasing allele, 1.09; 95% confidence interval, 1.02-1.16; P = 0.008), whereas no association was observed with the other 3 single-nucleotide polymorphisms (P > 0.23). The odds ratio of PD per genetically predicted 10% lower 25-hydroxyvitamin D concentration, based on the 4 single-nucleotide polymorphisms, was 0.98 (95% confidence interval, 0.93-1.04; P = 0.56).CONCLUSIONS: This Mendelian randomization study provides no clear support that lowered 25-hydroxyvitamin D concentration is causally associated with risk of PD. © 2017 International Parkinson and Movement Disorder Society.
  •  
9.
  • Nakanishi, Tomoko, et al. (författare)
  • Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality
  • 2021
  • Ingår i: Journal of Clinical Investigation. - : American Society For Clinical Investigation. - 0021-9738 .- 1558-8238. ; 131:23
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND. There is considerable variability in COVID-19 outcomes among younger adults, and some of this variation may be due to genetic predisposition. METHODS. We combined individual level data from 13,888 COVID-19 patients (n = 7185 hospitalized) from 17 cohorts in 9 countries to assess the association of the major common COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with mortality, COVID-19-related complications, and laboratory values. We next performed metaanalyses using FinnGen and the Columbia University COVID-19 Biobank. RESULTS. We found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (HR, 1.4; 95% CI, 1.2-1.7). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (OR, 2.1; 95% CI, 1.6-2.6), venous thromboembolism (OR, 1.7; 95% CI, 1.2-2.4), and hepatic injury (OR, 1.5; 95% CI, 1.2-2.0). Risk allele carriers age 60 years and younger had higher odds of death or severe respiratory failure (OR, 2.7; 95% CI, 1.8-3.9) compared with those of more than 60 years (OR, 1.5; 95% CI, 1.2-1.8; interaction, P = 0.038). Among individuals 60 years and younger who died or experienced severe respiratory failure, 32.3% were risk-variant carriers compared with 13.9% of those not experiencing these outcomes. This risk variant improved the prediction of death or severe respiratory failure similarly to, or better than, most established clinical risk factors. CONCLUSIONS. The major common COVID-19 genetic risk factor is associated with increased risks of morbidity and mortality, which are more pronounced among individuals 60 years or younger. The effect was similar in magnitude and more common than most established clinical risk factors, suggesting potential implications for future clinical risk management.
  •  
10.
  • Nethander, Maria, 1980, et al. (författare)
  • An atlas of genetic determinants of forearm fracture.
  • 2023
  • Ingår i: Nature genetics. - : Springer Nature. - 1546-1718 .- 1061-4036. ; 55:11, s. 1820-1830
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (11)
Typ av innehåll
refereegranskat (11)
Författare/redaktör
Richards, J. Brent (8)
Nakanishi, Tomoko (5)
Zeberg, Hugo (5)
Frithiof, Robert (4)
Butler-Laporte, Guil ... (4)
Zhou, Sirui (4)
visa fler...
Langenberg, Claudia (3)
Alarcón-Riquelme, Ma ... (2)
Karlsen, Tom H (2)
Martin, Richard M (2)
Ohlsson, Claes, 1965 (2)
Larsson, Susanna C. (2)
Johansson, Mattias (2)
Lipcsey, Miklós (2)
Hultström, Michael, ... (2)
Ganna, Andrea (2)
Brennan, Paul (2)
Afilalo, Jonathan (2)
Schulte, Eva C (2)
Fernandez-Cadenas, I ... (2)
Prati, Daniele (2)
Valenti, Luca (2)
Morrison, David R. (2)
García, Federico (2)
Romero-Gomez, Manuel (2)
Asselta, Rosanna (2)
Duga, Stefano (2)
Lu, Tianyuan (2)
Hveem, Kristian (2)
Chen, Yiheng (2)
Forgetta, Vincenzo (2)
Franke, Andre (2)
Pereira, Alexandre C ... (2)
Mooser, Vincent (2)
Bujanda, Luis (2)
Pietzner, Maik (2)
Brunet-Ratnasingham, ... (2)
Durand, Madeleine (2)
Kaufmann, Daniel E. (2)
Bernardo, David (2)
Mägi, Reedik (2)
Nalls, Mike A. (2)
Ellinghaus, David (2)
Hov, Johannes R. (2)
Pujol, Aurora (2)
Pigazzini, Sara (2)
Degenhardt, Frauke (2)
Maya-Miles, Douglas (2)
Bouysran, Youssef (2)
Palom, Adriana (2)
visa färre...
Lärosäte
Uppsala universitet (9)
Umeå universitet (5)
Lunds universitet (3)
Göteborgs universitet (2)
Stockholms universitet (1)
visa fler...
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (11)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy