SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Richards Sue) "

Sökning: WFRF:(Richards Sue)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kohonen-Corish, Maija R J, et al. (författare)
  • How to catch all those mutations--the report of the third Human Variome Project Meeting, UNESCO Paris, May 2010.
  • 2010
  • Ingår i: Human Mutation. - : John Wiley and Sons Inc.. - 1059-7794 .- 1098-1004. ; 31:12, s. 1374-1381
  • Tidskriftsartikel (refereegranskat)abstract
    • The third Human Variome Project (HVP) Meeting "Integration and Implementation" was held under UNESCO Patronage in Paris, France, at the UNESCO Headquarters May 10-14, 2010. The major aims of the HVP are the collection, curation, and distribution of all human genetic variation affecting health. The HVP has drawn together disparate groups, by country, gene of interest, and expertise, who are working for the common good with the shared goal of pushing the boundaries of the human variome and collaborating to avoid unnecessary duplication. The meeting addressed the 12 key areas that form the current framework of HVP activities: Ethics; Nomenclature and Standards; Publication, Credit and Incentives; Data Collection from Clinics; Overall Data Integration and Access-Peripheral Systems/Software; Data Collection from Laboratories; Assessment of Pathogenicity; Country Specific Collection; Translation to Healthcare and Personalized Medicine; Data Transfer, Databasing, and Curation; Overall Data Integration and Access-Central Systems; and Funding Mechanisms and Sustainability. In addition, three societies that support the goals and the mission of HVP also held their own Workshops with the view to advance disease-specific variation data collection and utilization: the International Society for Gastrointestinal Hereditary Tumours, the Micronutrient Genomics Project, and the Neurogenetics Consortium.
  •  
2.
  • Kaput, Jim, et al. (författare)
  • Planning the human variome project: the Spain report.
  • 2009
  • Ingår i: Human Mutation. - : John Wiley and Sons Inc.. - 1059-7794. ; 30:4, s. 496-510
  • Tidskriftsartikel (refereegranskat)abstract
    • The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008.
  •  
3.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture.
  • 2015
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-117
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
4.
  • Sherborne, Amy L., et al. (författare)
  • Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718. ; 42:6, s. 4-492
  • Tidskriftsartikel (refereegranskat)abstract
    • Using data from a genome-wide association study of 907 individuals with childhood acute lymphoblastic leukemia (cases) and 2,398 controls and with validation in samples totaling 2,386 cases and 2,419 controls, we have shown that common variation at 9p21.3 (rs3731217, intron 1 of CDKN2A) influences acute lymphoblastic leukemia risk (odds ratio = 0.71, P = 3.01 x 10(-11)), irrespective of cell lineage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy