SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Richter E. A.) ;hsvcat:4"

Sökning: WFRF:(Richter E. A.) > Lantbruksvetenskap

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Capek, P., et al. (författare)
  • The effect of warming on the vulnerability of subducted organic carbon in arctic soils
  • 2015
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717 .- 1879-3428. ; 90, s. 19-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic permafrost soils contain large stocks of organic carbon (OC). Extensive cryogenic processes in these soils cause subduction of a significant part of OC-rich topsoil down into mineral soil through the process of cryoturbation. Currently, one-fourth of total permafrost OC is stored in subducted organic horizons. Predicted climate change is believed to reduce the amount of OC in permafrost soils as rising temperatures will increase decomposition of OC by soil microorganisms. To estimate the sensitivity of OC decomposition to soil temperature and oxygen levels we performed a 4-month incubation experiment in which we manipulated temperature (4-20 degrees C) and oxygen level of topsoil organic, subducted organic and mineral soil horizons. Carbon loss (C-LOSS) was monitored and its potential biotic and abiotic drivers, including concentrations of available nutrients, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools, were measured. We found that independently of the incubation temperature, C-LOSS from subducted organic and mineral soil horizons was one to two orders of magnitude lower than in the organic topsoil horizon, both under aerobic and anaerobic conditions. This corresponds to the microbial biomass being lower by one to two orders of magnitude. We argue that enzymatic degradation of autochthonous subducted OC does not provide sufficient amounts of carbon and nutrients to sustain greater microbial biomass. The resident microbial biomass relies on allochthonous fluxes of nutrients, enzymes and carbon from the OC-rich topsoil. This results in a "negative priming effect", which protects autochthonous subducted OC from decomposition at present. The vulnerability of subducted organic carbon in cryoturbated arctic soils under future climate conditions will largely depend on the amount of allochthonous carbon and nutrient fluxes from the topsoil. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
2.
  • Quentin, Audrey G, et al. (författare)
  • Non-structural carbohydrates in woody plants compared among laboratories.
  • 2015
  • Ingår i: Tree physiology. - : Oxford University Press (OUP). - 1758-4469 .- 0829-318X. ; 35:11, s. 1146-1165
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.
  •  
3.
  • Landhausser, S. M., et al. (författare)
  • Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates
  • 2018
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 38:12, s. 1764-1778
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-structural carbohydrates (NSCs), the stored products of photosynthesis, building blocks for growth and fuel for respiration, are central to plant metabolism, but their measurement is challenging. Differences in methods and procedures among laboratories can cause results to vary widely, limiting our ability to integrate and generalize patterns in plant carbon balance among studies. A recent assessment found that NSC concentrations measured for a common set of samples can vary by an order of magnitude, but sources for this variability were unclear. We measured a common set of nine plant material types, and two synthetic samples with known NSC concentrations, using a common protocol for sugar extraction and starch digestion, and three different sugar quantification methods (ion chromatography, enzyme, acid) in six laboratories. We also tested how sample handling, extraction solvent and centralizing parts of the procedure in one laboratory affected results. Non-structural carbohydrate concentrations measured for synthetic samples were within about 11.5% of known values for all three methods. However, differences among quantification methods were the largest source of variation in NSC measurements for natural plant samples because the three methods quantify different NSCs. The enzyme method quantified only glucose, fructose and sucrose, with ion chromatography we additionally quantified galactose, while the acid method quantified a large range of mono- and oligosaccharides. For some natural samples, sugars quantified with the acid method were two to five times higher than with other methods, demonstrating that trees allocate carbon to a range of sugar molecules. Sample handling had little effect on measurements, while ethanol sugar extraction improved accuracy over water extraction. Our results demonstrate that reasonable accuracy of NSC measurements can be achieved when different methods are used, as long as protocols are robust and standardized. Thus, we provide detailed protocols for the extraction, digestion and quantification of NSCs in plant samples, which should improve the comparability of NSC measurements among laboratories.
  •  
4.
  • Sigurdsson, Bjarni D., et al. (författare)
  • Geothermal ecosystems as natural climate change experiments : The ForHot research site in Iceland as a case study
  • 2016
  • Ingår i: Icelandic Agricultural Sciences. - 1670-567X. ; 29:1, s. 53-71
  • Tidskriftsartikel (refereegranskat)abstract
    • This article describes how natural geothermal soil temperature gradients in Iceland have been used to study terrestrial ecosystem responses to soil warming. The experimental approach was evaluated at three study sites in southern Iceland one grassland site that has been warm for at least 50 years (GO), and another comparable grassland site (GN) and a Sitka spruce plantation (FN) site that have both been warmed since an earthquake took place in 2008. Within each site type, five ca. 50 m long transects, with six permanent study plots each, were established across the soil warming gradients, spanning from unwarmed control conditions to gradually warmer soils. It was attempted to select the plots so the annual warming levels would be ca. +1, +3, +5, +10 and +20 °C within each transect. Results of continuous measurements of soil temperature (Ts) from 2013-2015 revealed that the soil warming was relatively constant and followed the seasonal Ts cycle of the unwarmed control plots. Volumetric water content in the top 5 cm of soil was repeatedly surveyed during 2013-2016. The grassland soils were wetter than the FN soils, but they had sometimes some significant warming-induced drying in the surface layer of the warmest plots, in contrast to FN. Soil chemistry did not show any indications that geothermal water had reached the root zone, but soil pH did increase somewhat with warming, which was probably linked to vegetation changes. As expected, the potential decomposition rate of organic matter increased significantly with warming. It was concluded that the natural geothermal gradients at the ForHot sites in Iceland offered realistic conditions for studying terrestrial ecosystem responses to warming with minimal artefacts.
  •  
5.
  • Verbrigghe, Niel, et al. (författare)
  • Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil
  • 2022
  • Ingår i: Biogeosciences. - : Copernicus. - 1726-4170 .- 1726-4189. ; 19:14, s. 3381-3393
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming may lead to carbon transfers from soils to the atmosphere, yet this positive feedback to the climate system remains highly uncertain, especially in subsoils . Using natural geothermal soil warming gradients of up to +6.4 °C in subarctic grasslands , we show that soil organic carbon (SOC) stocks decline strongly and linearly with warming (-2.8tha-1 °C-1). Comparison of SOC stock changes following medium-term (5 and 10 years) and long-term (>50 years) warming revealed that all SOC stock reduction occurred within the first 5 years of warming, after which continued warming no longer reduced SOC stocks. This rapid equilibration of SOC observed in Andosol suggests a critical role for ecosystem adaptations to warming and could imply short-lived soil carbon-climate feedbacks. Our data further revealed that the soil C loss occurred in all aggregate size fractions and that SOC stock reduction was only visible in topsoil (0-10cm). SOC stocks in subsoil (10-30cm), where plant roots were absent, showed apparent conservation after >50 years of warming. The observed depth-dependent warming responses indicate that explicit vertical resolution is a prerequisite for global models to accurately project future SOC stocks for this soil type and should be investigated for soils with other mineralogies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy