SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Richter M) ;lar1:(ltu)"

Sökning: WFRF:(Richter M) > Luleå tekniska universitet

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Smith, A., et al. (författare)
  • LunarEX-a proposal to cosmic vision
  • 2009
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 711-740
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  • Nilsson, Hans, et al. (författare)
  • Evolution of the ion environment of comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Rosetta spacecraft is escorting comet 67P/Churyumov-Gerasimenko from a heliocentric distance of >3.6 AU, where the comet activity was low, until perihelion at 1.24 AU. Initially, the solar wind permeates the thin comet atmosphere formed from sublimation. Aims. Using the Rosetta Plasma Consortium Ion Composition Analyzer (RPC-ICA), we study the gradual evolution of the comet ion environment, from the first detectable traces of water ions to the stage where cometary water ions accelerated to about 1 keV energy are abundant. We compare ion fluxes of solar wind and cometary origin. Methods. RPC-ICA is an ion mass spectrometer measuring ions of solar wind and cometary origins in the 10 eV-40 keV energy range. Results. We show how the flux of accelerated water ions with energies above 120 eV increases between 3.6 and 2.0 AU. The 24 h average increases by 4 orders of magnitude, mainly because high-flux periods become more common. The water ion energy spectra also become broader with time. This may indicate a larger and more uniform source region. At 2.0 AU the accelerated water ion flux is frequently of the same order as the solar wind proton flux. Water ions of 120 eV-few keV energy may thus constitute a significant part of the ions sputtering the nucleus surface. The ion density and mass in the comet vicinity is dominated by ions of cometary origin. The solar wind is deflected and the energy spectra broadened compared to an undisturbed solar wind. Conclusions. The flux of accelerated water ions moving from the upstream direction back toward the nucleus is a strongly nonlinear function of the heliocentric distance.
  •  
4.
  •  
5.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
6.
  •  
7.
  • Pignatelli, Francesco, et al. (författare)
  • Effect of CO2 dilution on structures of premixed syngas/air flames in a gas turbine model combustor
  • 2023
  • Ingår i: Combustion and Flame. - : Elsevier Inc.. - 0010-2180 .- 1556-2921. ; 255
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of CO2 dilution on combustion of syngas (a mixture of H2, CO, and CH4) was investigated in a lab-scale gas turbine model combustor at atmospheric pressure conditions. Two mild dilution levels of CO2, corresponding to 15% and 34% of CO2 mole fraction in the syngas/CO2 mixtures, were experimentally investigated to evaluate the effects of CO2 dilution on the flame structures and the emissions of CO and NOx. All experiments were performed at a constant Reynolds number (Re = 10000). High-speed flame luminescence, simultaneous planar laser-induced fluorescence (PLIF) measurements of the OH radicals and particle image velocimetry (PIV) were employed for qualitative and quantitative assessment of the resulting flame and flow structures. The main findings are: (a) the operability range of the syngas flames is significantly affected by the CO2 dilution, with both the lean blowoff (LBO) limit and the flashback limit shifting towards fuel-richer conditions as the CO2 dilution increases; (b) syngas flames exhibit flame-pocket structures with chemical reactions taking place in isolated pockets surrounded by non-reacting fuel/air mixture; (c) the inner recirculation zone tends to move closer to the burner axis at high CO2 dilution, and (d) the NOx emission becomes significantly lower with increasing CO2 dilution while the CO emission exhibits the opposite trend. The flame-pocket structure is more significant with increased CO2 dilution level. The low NOx emissions and high CO emissions are the results of the flame-pocket structures. © 2023 The Author(s)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy