SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rinne J) ;pers:(Aurela Mika)"

Sökning: WFRF:(Rinne J) > Aurela Mika

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yi, Chuixiang, et al. (författare)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
2.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The uncertain climate footprint of wetlands under human pressure
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 112:15, s. 4594-4599
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.
  •  
3.
  • Chang, Kuang Yu, et al. (författare)
  • Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 2266-2266
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.
  •  
4.
  • Peltola, Olli, et al. (författare)
  • Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
  • 2019
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 11:3, s. 1263-1289
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process ("bottom-up") or inversion ("top-down") models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45° N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash-Sutcliffe model efficiency D 0:47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3-41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4-39.9) or 38 (25.9-49.5) Tg(CH4) yr-1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).
  •  
5.
  • Räsänen, Matti, et al. (författare)
  • Carbon balance of a grazed savanna grassland ecosystem in South Africa
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:5, s. 1039-1054
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical savannas and grasslands are estimated to contribute significantly to the total primary production of all terrestrial vegetation. Large parts of African savannas and grasslands are used for agriculture and cattle grazing, but the carbon flux data available from these areas are limited. This study explores carbon dioxide fluxes measured with the eddy covariance method for 3 years at a grazed savanna grassland in Welgegund, South Africa. The tree cover around the measurement site, grazed by cattle and sheep, was around 15 %. The night-time respiration was not significantly dependent on either soil moisture or soil temperature on a weekly temporal scale, whereas on an annual timescale higher respiration rates were observed when soil temperatures were higher. The carbon dioxide balances of the years 2010-2011, 2011-2012 and 2012-2013 were-85 ± 16, 67 ± 20 and 139 ± 13 gC m-2yr-1, respectively. The yearly variation was largely determined by the changes in the early wet season fluxes (September to November) and in the mid-growing season fluxes (December to January). Early rainfall enhanced the respiratory capacity of the ecosystem throughout the year, whereas during the mid-growing season high rainfall resulted in high carbon uptake.
  •  
6.
  • Räsänen, Matti, et al. (författare)
  • Root-zone soil moisture variability across African savannas : From pulsed rainfall to land-cover switches
  • 2020
  • Ingår i: Ecohydrology. - : Wiley. - 1936-0584 .- 1936-0592. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The main source of soil moisture variability in savanna ecosystems is pulsed rainfall. Rainfall pulsing impacts water-stress durations, soil moisture switching between wet-to-dry and dry-to-wet states, and soil moisture spectra as well as derived measures from it such as soil moisture memory. Rainfall pulsing is also responsible for rapid changes in grassland leaf area and concomitant changes in evapotranspirational (ET) losses, which then impact soil moisture variability. With the use of a hierarchy of models and soil moisture measurements, temporal variability in root-zone soil moisture and water-stress periods are analysed at four African sites ranging from grass to miombo savannas. The normalized difference vegetation index (NDVI) and potential ET (PET)-adjusted ET model predict memory timescale and dry persistence in agreement with measurements. The model comparisons demonstrate that dry persistence and mean annual dry periods must account for seasonal and interannual changes in maximum ET represented by NDVI and to a lesser extent PET. Interestingly, the precipitation intensity and soil moisture memory were linearly related across three savannas with ET/infiltration ∼ 1.0. This relation and the variability of length and timing of dry periods are also discussed.
  •  
7.
  • Räsänen, Matti, et al. (författare)
  • The effect of rainfall amount and timing on annual transpiration in a grazed savanna grassland
  • 2022
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 26:22, s. 5773-5791
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of precipitation (P) variability with respect to evapotranspiration (ET) and its two components, transpiration (T) and evaporation (E), from savannas continues to draw significant research interest given its relevance to a number of ecohydrological applications. Our study reports on 6 years of measured ET and estimated T and E from a grazed savanna grassland at Welgegund, South Africa. Annual P varied significantly with respect to amount (508 to 672 mm yr-1), with dry years characterized by infrequent early-season rainfall. T was determined using annual water-use efficiency and gross primary production estimates derived from eddy-covariance measurements of latent heat flux and net ecosystem CO2 exchange rates. The computed annual T for the 4 wet years with frequent early wet-season rainfall was nearly constant, 326±19 mm yr-1 (T/ET=0.51), but was lower and more variable between the 2 dry years (255 and 154 mm yr-1, respectively). Annual T and T/ET were linearly related to the early wet-season storm frequency. The constancy of annual T during wet years is explained by the moderate water stress of C4 grasses as well as trees' ability to use water from deeper layers. During extreme drought, grasses respond to water availability with a dieback-regrowth pattern, reducing leaf area and transpiration and, thus, increasing the proportion of transpiration contributed by trees. The works suggest that the early-season P distribution explains the interannual variability in T, which should be considered when managing grazing and fodder production in these grasslands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy