SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ripatti S) "

Sökning: WFRF:(Ripatti S)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Munn-Chernoff, M. A., et al. (författare)
  • Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies
  • 2020
  • Ingår i: Addiction Biology. - 1355-6215 .- 1369-1600.
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r(g)], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from similar to 2400 to similar to 537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r(g) = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r(g) = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r(g) = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r(gs) = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
  •  
2.
  • Speliotes, Elizabeth K., et al. (författare)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 42:11, s. 53-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
3.
  • Watson, H. J., et al. (författare)
  • Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa
  • 2019
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 51:8, s. 1207-
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness(1), affecting 0.9-4% of women and 0.3% of men(2-4), with twin-based heritability estimates of 50-60%(5). Mortality rates are higher than those in other psychiatric disorders(6), and outcomes are unacceptably poor(7). Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)(8,9) and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes.
  •  
4.
  • Mahajan, Anubha, et al. (författare)
  • Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 46:3, s. 234-234
  • Tidskriftsartikel (refereegranskat)abstract
    • To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
  •  
5.
  •  
6.
  • Deloukas, Panos, et al. (författare)
  • Large-scale association analysis identifies new risk loci for coronary artery disease
  • 2013
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 45:1, s. 25-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r(2) < 0.2) strongly associated with CAD at a 5% false discovery rate (FDR). Together, these variants explain approximately 10.6% of CAD heritability. Of the 46 genome-wide significant lead SNPs, 12 show a significant association with a lipid trait, and 5 show a significant association with blood pressure, but none is significantly associated with diabetes. Network analysis with 233 candidate genes (loci at 10% FDR) generated 5 interaction networks comprising 85% of these putative genes involved in CAD. The four most significant pathways mapping to these networks are linked to lipid metabolism and inflammation, underscoring the causal role of these activities in the genetic etiology of CAD. Our study provides insights into the genetic basis of CAD and identifies key biological pathways.
  •  
7.
  •  
8.
  • Lango Allen, Hana, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - : Nature Publishing Group. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
9.
  • Lu, Yingchang, et al. (författare)
  • New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk.
  • 2016
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
  •  
10.
  • Bryois, J., et al. (författare)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • Ingår i: Nature Genetics. - 1061-4036. ; 52:5, s. 482-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (112)
konferensbidrag (2)
Typ av innehåll
refereegranskat (108)
övrigt vetenskapligt (6)
Författare/redaktör
Ripatti, S (105)
Ripatti, Samuli (63)
Salomaa, V (50)
Metspalu, A (47)
Salomaa, Veikko (46)
McCarthy, Mark I (45)
visa fler...
Wilson, James F. (45)
Palotie, A. (45)
Wareham, Nicholas J (44)
Van Duijn, Cornelia ... (43)
Kaprio, J (42)
Gieger, C (42)
Loos, Ruth J F (42)
Esko, T (42)
Pedersen, NL (41)
Ingelsson, E (41)
Perola, M. (41)
Uitterlinden, Andre ... (40)
Gieger, Christian (40)
Ingelsson, Erik (39)
Perola, Markus (37)
Campbell, H (35)
Campbell, Harry (35)
Lind, Lars (34)
Hofman, Albert (34)
Hayward, C. (34)
Boomsma, Dorret I. (33)
Pedersen, Nancy L (33)
Boomsma, DI (32)
Hofman, A (32)
Mohlke, Karen L (32)
Metspalu, Andres (32)
Rudan, Igor (32)
Hayward, Caroline (32)
Hottenga, JJ (31)
Groop, Leif (31)
Lind, L (31)
Jarvelin, MR (31)
Barroso, Ines (31)
Eriksson, Johan G. (31)
van Duijn, CM (30)
Willemsen, G (29)
Uitterlinden, AG (29)
Boehnke, Michael (29)
Samani, Nilesh J. (29)
McCarthy, MI (29)
Wright, Alan F. (29)
Lehtimaki, T (29)
Harris, Tamara B (29)
Wilson, JF (29)
visa färre...
Lärosäte
Karolinska Institutet (65)
Lunds universitet (38)
Uppsala universitet (33)
Göteborgs universitet (22)
Umeå universitet (9)
Stockholms universitet (6)
visa fler...
Örebro universitet (2)
Jönköping University (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (114)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (56)
Naturvetenskap (13)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy