SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roach C. M.) ;lar1:(lu);hsvcat:3"

Sökning: WFRF:(Roach C. M.) > Lunds universitet > Medicin och hälsovetenskap

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
3.
  •  
4.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Roach, J C, et al. (författare)
  • Genetic mapping at 3-kilobase resolution reveals inositol 1,4,5-triphosphate receptor 3 as a risk factor for type 1 diabetes in Sweden.
  • 2006
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 79:4, s. 614-627
  • Tidskriftsartikel (refereegranskat)abstract
    • We mapped the genetic influences for type 1 diabetes (T1D), using 2,360 single-nucleotide polymorphism (SNP) markers in the 4.4-Mb human major histocompatibility complex (MHC) locus and the adjacent 493 kb centromeric to the MHC, initially in a survey of 363 Swedish T1D cases and controls. We confirmed prior studies showing association with T1D in the MHC, most significantly near HLA-DR/DQ. In the region centromeric to the MHC, we identified a peak of association within the inositol 1,4,5-triphosphate receptor 3 gene (ITPR3; formerly IP3R3). The most significant single SNP in this region was at the center of the ITPR3 peak of association (P=1.7×10−4 for the survey study). For validation, we typed an additional 761 Swedish individuals. The P value for association computed from all 1,124 individuals was 1.30×10−6 (recessive odds ratio 2.5; 95% confidence interval [CI] 1.7–3.9). The estimated population-attributable risk of 21.6% (95% CI 10.0%–31.0%) suggests that variation within ITPR3 reflects an important contribution to T1D in Sweden. Two-locus regression analysis supports an influence of ITPR3 variation on T1D that is distinct from that of any MHC class II gene.
  •  
6.
  • Maziarz, M., et al. (författare)
  • The association between the PTPN22 1858C > T variant and type 1 diabetes depends on HLA risk and GAD65 autoantibodies
  • 2010
  • Ingår i: Genes and Immunity. - : Springer Science and Business Media LLC. - 1476-5470 .- 1466-4879. ; 11:5, s. 406-415
  • Tidskriftsartikel (refereegranskat)abstract
    • The single nucleotide polymorphism 1858C> T in the PTPN22 gene is associated with type 1 diabetes (T1D) in several populations. Earlier reports have suggested that the association may be modified by human leukocyte antigen (HLA), as well as by islet autoantibodies. In a large case-control study of Swedish incident T1D patients and controls, 0-34 years of age, we tested whether the odds ratio (OR) measure of association was dependent on HLA or autoantibodies against the islet autoantigens glutamic acid decarboxylase 65 kDa autoantibodies (GADA), insulin, islet antigen-2, or islet cell. The association between the carrier status of 1858C> T allele in PTPN22 (PTPN22(CT + TT)) and T1D was modified by HLA. In addition, in GADA-positive T1D, the OR was 2.83 (2.00, 3.99), whereas in GADA-negative T1D, the OR was 1.41 (0.98, 2.04) (P for comparison = 0.007). The OR of association between PTPN22(CT + TT) and GADA-positive T1D declined with increasing HLA-risk category from 6.12 to 1.54 (P = 0.003); no such change was detected in GADA-negative T1D (P = 0.722) (P for comparison = 0.001). However, the absolute difference in risk between PTPN22(CC) and PTPN22(CT + TT) subjects with high-risk HLA was five times higher than that for subjects with low-risk HLA. We hypothesize that the altered T-cell function because of the PTPN22(1858C> T) polymorphism is exclusively associated with GADA-positive T1D at diagnosis. Genes and Immunity (2010) 11, 406-415; doi: 10.1038/gene.2010.12; published online 6 May 2010
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy