SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Robberecht Wim) ;pers:(Ludolph Albert C)"

Search: WFRF:(Robberecht Wim) > Ludolph Albert C

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Blauw, Hylke M, et al. (author)
  • A large genome scan for rare CNVs in amyotrophic lateral sclerosis
  • 2010
  • In: Human Molecular Genetics. - : Oxford Journals. - 0964-6906 .- 1460-2083. ; 19:20, s. 4091-4099
  • Journal article (peer-reviewed)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease selectively affecting motor neurons in the brain and spinal cord. Recent genome-wide association studies (GWASs) have identified several common variants which increase disease susceptibility. In contrast, rare copy-number variants (CNVs), which have been associated with several neuropsychiatric traits, have not been studied for ALS in well-powered study populations. To examine the role of rare CNVs in ALS susceptibility, we conducted a CNV association study including over 19,000 individuals. In a genome-wide screen of 1875 cases and 8731 controls, we did not find evidence for a difference in global CNV burden between cases and controls. In our association analyses, we identified two loci that met our criteria for follow-up: the DPP6 locus (OR = 3.59, P = 6.6 × 10(-3)), which has already been implicated in ALS pathogenesis, and the 15q11.2 locus, containing NIPA1 (OR = 12.46, P = 9.3 × 10(-5)), the gene causing hereditary spastic paraparesis type 6 (HSP 6). We tested these loci in a replication cohort of 2559 cases and 5887 controls. Again, results were suggestive of association, but did not meet our criteria for independent replication: DPP6 locus: OR = 1.92, P = 0.097, pooled results: OR = 2.64, P = 1.4 × 10(-3); NIPA1: OR = 3.23, P = 0.041, pooled results: OR = 6.20, P = 2.2 × 10(-5)). Our results highlight DPP6 and NIPA1 as candidates for more in-depth studies. Unlike other complex neurological and psychiatric traits, rare CNVs with high effect size do not play a major role in ALS pathogenesis.
  •  
2.
  • Diekstra, Frank P., et al. (author)
  • C9orf72 and UNC13A Are Shared Risk Loci for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia : A Genome-Wide Meta-Analysis
  • 2014
  • In: Annals of Neurology. - : John Wiley & Sons. - 0364-5134 .- 1531-8249. ; 76:1, s. 120-133
  • Journal article (peer-reviewed)abstract
    • Objective: Substantial clinical, pathological, and genetic overlap exists between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 inclusions have been found in both ALS and FTD cases (FTD-TDP). Recently, a repeat expansion in C9orf72 was identified as the causal variant in a proportion of ALS and FTD cases. We sought to identify additional evidence for a common genetic basis for the spectrum of ALS-FTD. Methods: We used published genome-wide association studies data for 4,377 ALS patients and 13,017 controls, and 435 pathology-proven FTD-TDP cases and 1,414 controls for genotype imputation. Data were analyzed in a joint meta-analysis, by replicating topmost associated hits of one disease in the other, and by using a conservative rank products analysis, allocating equal weight to ALS and FTD-TDP sample sizes. Results: Meta-analysis identified 19 genome-wide significant single nucleotide polymorphisms (SNPs) in C9orf72 on chromosome 9p21.2 (lowest p = 2.6 x 10(-12)) and 1 SNP in UNC13A on chromosome 19p13.11 (p = 1.0 x 10(-11)) as shared susceptibility loci for ALS and FTD-TDP. Conditioning on the 9p21.2 genotype increased statistical significance at UNC13A. A third signal, on chromosome 8q24.13 at the SPG8 locus coding for strumpellin (p = 3.91 x 10(-7)) was replicated in an independent cohort of 4,056 ALS patients and 3,958 controls (p = 0.026; combined analysis p = 1.01 x 10(-7)). Interpretation: We identified common genetic variants in C9orf72, but in addition in UNC13A that are shared between ALS and FTD. UNC13A provides a novel link between ALS and FTD-TDP, and identifies changes in neurotransmitter release and synaptic function as a converging mechanism in the pathogenesis of ALS and FTD-TDP.
  •  
3.
  • Jonsson, P Andreas, et al. (author)
  • CuZn-superoxide dismutase in D90A heterozygotes from recessive and dominant ALS pedigrees.
  • 2002
  • In: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 10:3, s. 327-333
  • Journal article (peer-reviewed)abstract
    • Mutations in CuZn-superoxide dismutase (CuZn-SOD) have been linked to ALS. In most cases ALS is inherited as a dominant trait and there is marked reduction in CuZn-SOD activity in samples from the patients. The D90A mutation, however, mostly causes ALS as a recessive trait and shows near normal CuZn-SOD activity. A few familial and sporadic ALS cases heterozygous for the D90A mutation have also been found. Haplotype analysis of both types of D90A families has suggested that all recessive cases share a common founder and may carry a protective factor located close to the D90A mutant CuZn-SOD locus. To search for effects of a putative protective factor we analysed erythrocytes from D90A heterozygous individuals for SOD activity by a direct assay, subunit composition by immunoblotting, and zymogram pattern formed by isoelectric focusing and SOD staining. Included were heterozygotes from 17 recessive families, and from 2 dominant families and 4 apparently sporadic cases. The CuZn-SOD activity in the recessive and dominant groups was found to be equal, and 95% of controls. The ratio between mutant and wildtype subunits was likewise equal and 0.8:1 in both groups. The zymograms revealed multiple bands representing homo- and heterodimers. There were, however, no differences between the groups in patterns or in ratios between the molecular forms. In conclusion we find no evidence from analyses in erythrocytes that the putative protective factor in recessive families acts by simply downregulating the synthesis or altering the molecular structure or turnover of the mutant enzyme.
  •  
4.
  • Kenna, Kevin P., et al. (author)
  • NEK1 variants confer susceptibility to amyotrophic lateral sclerosis
  • 2016
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:9, s. 1037-1042
  • Journal article (peer-reviewed)abstract
    • To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261 His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261 His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology.
  •  
5.
  • Nicolas, Aude, et al. (author)
  • Genome-wide Analyses Identify KIF5A as a Novel ALS Gene
  • 2018
  • In: Neuron. - : Cell Press. - 0896-6273 .- 1097-4199. ; 97:6, s. 1268-1283.e6
  • Journal article (peer-reviewed)abstract
    • To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
  •  
6.
  • Oeckl, Patrick, et al. (author)
  • Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS
  • 2016
  • In: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. - : Informa UK Limited. - 2167-8421 .- 2167-9223. ; 17:5-6, s. 404-413
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: Neurofilaments are leading neurochemical biomarkers for amyotrophic lateral sclerosis (ALS). Here, we investigated the effect of preanalytical factors on neurofilament concentrations in cerebrospinal fluid (CSF) in a reverse round-robin with 15 centers across Europe/U.S. METHODS: Samples from ALS and control patients (5/5 each center, n=150) were analyzed for phosphorylated neurofilament heavy chain (pNfH) and neurofilament light chain (NfL) at two laboratories. RESULTS: CSF pNfH was increased (p<0.05) in ALS in 10 out of 15 centers and NfL in 5 out of 12 centers. The coefficient of variation (CV%) of pNfH measurements between laboratories was 18.7 +/- 19.1%. We calculated a diagnostic cut-off of >568.5pg/mL for pNfH (sensitivity 78.7%, specificity 93.3%) and >1,431pg/mL for NfL (sensitivity 79.0%, specificity 86.4%). CONCLUSION: Values in ALS patients are already comparable between most centers, supporting eventual implementation into clinical routine. However, continuous quality control programs will be necessary for inclusion in the diagnostic work-up.
  •  
7.
  • Tazelaar, Gijs H. P., et al. (author)
  • Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort
  • 2019
  • In: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 74, s. 234.e9-234.e15
  • Journal article (peer-reviewed)abstract
    • NIPA1 (nonimprinted in Prader-Willi/Angelman syndrome 1) mutations are known to cause hereditary spastic paraplegia type 6, a neurodegenerative disease that phenotypically overlaps to some extent with amyotrophic lateral sclerosis (ALS). Previously, a genomewide screen for copy number variants found an association with rare deletions in NIPA1 and ALS, and subsequent genetic analyses revealed that long (or expanded) polyalanine repeats in NIPA1 convey increased ALS susceptibility. We set out to perform a large-scale replication study to further investigate the role of NIPA1 polyalanine expansions with ALS, in which we characterized NIPA1 repeat size in an independent international cohort of 3955 patients with ALS and 2276 unaffected controls and combined our results with previous reports. Meta-analysis on a total of 6245 patients with ALS and 5051 controls showed an overall increased risk of ALS in those with expanded (>8) GCG repeat length (odds ratio = 1.50, p = 3.8×10−5). Together with previous reports, these findings provide evidence for an association of an expanded polyalanine repeat in NIPA1 and ALS.
  •  
8.
  •  
9.
  • van Es, Michael A, et al. (author)
  • Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis
  • 2011
  • In: Annals of Neurology. - : Wiley-Blackwell. - 0364-5134 .- 1531-8249. ; 70:6, s. 964-973
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: Several studies have suggested an increased frequency of variants in the gene encoding angiogenin (ANG) in patients with amyotrophic lateral sclerosis (ALS). Interestingly, a few ALS patients carrying ANG variants also showed signs of Parkinson disease (PD). Furthermore, relatives of ALS patients have an increased risk to develop PD, and the prevalence of concomitant motor neuron disease in PD is higher than expected based on chance occurrence. We therefore investigated whether ANG variants could predispose to both ALS and PD.METHODS: We reviewed all previous studies on ANG in ALS and performed sequence experiments on additional samples, which allowed us to analyze data from 6,471 ALS patients and 7,668 controls from 15 centers (13 from Europe and 2 from the USA). We sequenced DNA samples from 3,146 PD patients from 6 centers (5 from Europe and 1 from the USA). Statistical analysis was performed using the variable threshold test, and the Mantel-Haenszel procedure was used to estimate odds ratios.RESULTS: Analysis of sequence data from 17,258 individuals demonstrated a significantly higher frequency of ANG variants in both ALS and PD patients compared to control subjects (p = 9.3 × 10(-6) for ALS and p = 4.3 × 10(-5) for PD). The odds ratio for any ANG variant in patients versus controls was 9.2 for ALS and 6.7 for PD.INTERPRETATION: The data from this multicenter study demonstrate that there is a strong association between PD, ALS, and ANG variants. ANG is a genetic link between ALS and PD.
  •  
10.
  • van Es, Michael A, et al. (author)
  • Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis
  • 2009
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:10, s. 1083-1087
  • Journal article (peer-reviewed)abstract
    • We conducted a genome-wide association study among 2,323 individuals with sporadic amyotrophic lateral sclerosis (ALS) and 9,013 control subjects and evaluated all SNPs with P < 1.0 x 10(-4) in a second, independent cohort of 2,532 affected individuals and 5,940 controls. Analysis of the genome-wide data revealed genome-wide significance for one SNP, rs12608932, with P = 1.30 x 10(-9). This SNP showed robust replication in the second cohort (P = 1.86 x 10(-6)), and a combined analysis over the two stages yielded P = 2.53 x 10(-14). The rs12608932 SNP is located at 19p13.3 and maps to a haplotype block within the boundaries of UNC13A, which regulates the release of neurotransmitters such as glutamate at neuromuscular synapses. Follow-up of additional SNPs showed genome-wide significance for two further SNPs (rs2814707, with P = 7.45 x 10(-9), and rs3849942, with P = 1.01 x 10(-8)) in the combined analysis of both stages. These SNPs are located at chromosome 9p21.2, in a linkage region for familial ALS with frontotemporal dementia found previously in several large pedigrees.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view