Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rocklöv Joacim Professor 1979 ) "

Sökning: WFRF:(Rocklöv Joacim Professor 1979 )

  • Resultat 1-10 av 48
  • [1]2345Nästa
Sortera/gruppera träfflistan
  • Ramadona, Aditya L., 1982- (författare)
  • Spatiotemporal prediction of arbovirus outbreak risk : the role of weather and population mobility
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Background: Arboviruses such as dengue and chikungunya have been a significant public health burden globally for several decades. In Indonesia, all four dengue serotypes are circulating. Considering that Indonesian children are exposed to dengue early in life, and secondary infection is more likely to cause severe dengue, the population of Indonesia is confronting a high potential risk of severe dengue. Severe complications such as hemorrhage can develop and lead to fatal outcomes. There exists no specific treatment for dengue infection, but symptomatic treatment can be effective to prevent deaths. Consequently, vector control has become a critical component for controlling dengue transmission, but it is currently often triggered as a reactive response to observed outbreak clusters. Based on disease surveillance, it thus remains challenging to implement vector control efficiently to prevent outbreaks. While meteorological conditions have shown to be predictive of dengue incidence over space and time, it has rarely been used to predict outbreaks at a fine-scale intra-urban level. Further, as the propagation of dengue outbreaks and the introduction of viruses has been found to be associated with human mobility, predictive models combining meteorological conditions with granular mobility data hold promise to provide more predictive models. The objectives in this thesis were to 1) describe the influence of temperature, rainfall, and past dengue cases, and population mobility on dengue risk; 2) develop and validate spatiotemporal models of dengue outbreak risk at fine-scale at the intra-urban level; 3) to utilize new data to assess the emergence and spread of chikungunya in an outbreak situation.Methods: Initially, multivariate time series regression models were established to analyze the risk of dengue corresponding to monthly mean temperature, cumulative rainfall, and past dengue case. Following that, we investigated the potential use of geotagged social media data as a proxy of population mobility to estimate the effect of dengue virus importation pressure in urban villages. Subsequently, we employed distributed lag non-linear models with a Spatiotemporal Bayesian hierarchical model framework to determine the exposure-lag-response association between the risk of dengue and meteorological data while allowing the spatial covariance to be informed by mobility flows. Finally, we validated the selected best-fitted model by its predictive ability using an unseen dataset to mimic an actual situation of an early warning system in use.Results: We found that an optimal combination of meteorology and autoregressive lag terms of past dengue cases was predictive of dengue incidence and the occurrence of dengue epidemics. Subsequently, when we integrated mobility data our results suggested that population mobility was an essential driver of the spread of dengue within cities when combined with information on the local circulation of the dengue virus. The geotagged Twitter data was found to provide important information on presumably local population mobility patterns which were predictive and can improve our understanding of the direction and the risk of spread.Conclusions: A spatiotemporal prediction model was developed that predicted a prognosis of dengueat fine spatial and temporal resolution. Subsequently, such a prognosis can be used as the foundation for developing an early warning system to more effectively deploy vector control prior to the establishment of local outbreak clusters. These findings have implications for targeting dengue control activities at the intraurban villages level, especially in the light of ever increasing population growth, mobility and climate change.
  • Näslund, Ulf, et al. (författare)
  • Visualization of asymptomatic atherosclerotic disease for optimum cardiovascular prevention (VIPVIZA) : a pragmatic, open-label, randomised controlled trial
  • 2019
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 393:10167, s. 133-142
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Primary prevention of cardiovascular disease often fails because of poor adherence among practitioners and individuals to prevention guidelines. We aimed to investigate whether ultrasound-based pictorial information about subclinical carotid atherosclerosis, targeting both primary care physicians and individuals, improves prevention.METHODS: Visualization of asymptomatic atherosclerotic disease for optimum cardiovascular prevention (VIPVIZA) is a pragmatic, open-label, randomised controlled trial that was integrated within the Västerbotten Intervention Programme, an ongoing population-based cardiovascular disease prevention programme in northern Sweden. Individuals aged 40, 50, or 60 years with one or more conventional risk factors were eligible to participate. Participants underwent clinical examination, blood sampling, and ultrasound assessment of carotid intima media wall thickness and plaque formation. Participants were randomly assigned 1:1 with a computer-generated randomisation list to an intervention group (pictorial representation of carotid ultrasound plus a nurse phone call to confirm understanding) or a control group (not informed). The primary outcomes, Framingham risk score (FRS) and European systematic coronary risk evaluation (SCORE), were assessed after 1 year among participants who were followed up. This study is registered with ClinicalTrials.gov, number NCT01849575.FINDINGS: 3532 individuals were enrolled between April 29, 2013, and June 7, 2016, of which 1783 were randomly assigned to the control group and 1749 were assigned to the intervention group. 3175 participants completed the 1-year follow-up. At the 1-year follow-up, FRS and SCORE differed significantly between groups (FRS 1·07 [95% CI 0·11 to 2·03, p=0·0017] and SCORE 0·16 [0·02 to 0·30, p=0·0010]). FRS decreased from baseline to the 1-year follow-up in the intervention group and increased in the control group (-0·58 [95% CI -0·86 to -0·30] vs 0·35 [0·08 to 0·63]). SCORE increased in both groups (0·13 [95% CI 0·09 to 0·18] vs 0·27 [0·23 to 0·30]).INTERPRETATION: This study provides evidence of the contributory role of pictorial presentation of silent atherosclerosis for prevention of cardiovascular disease. It supports further development of methods to reduce the major problem of low adherence to medication and lifestyle modification.
  • Bowman, Leigh, et al. (författare)
  • A comparison of Zika and dengue outbreaks using national surveillance data in the Dominican Republic
  • 2018
  • Ingår i: PLoS Neglected Tropical Diseases. - : Public Library Science. - 1935-2727 .- 1935-2735. ; 12:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Aedes-borne arboviruses continue to precipitate epidemics worldwide. In Dominican Republic, the appearance of Zika virus cases that closely followed a large dengue epidemic provided an opportunity to study the different transmission drivers behind these two flaviviruses. Retrospective datasets were used to collect information on the populations at risk and descriptive statistics were used to describe the outbreaks on a national scale.METHODOLOGY/ PRINCIPAL FINDINGS: Expectedly, box plots showed that 75% of dengue was reported in those aged <20 years while Zika infections were more widely dispersed among the population. Dengue attack rates were marginally higher among males at 25.9 per 10,000 population vs. 21.5 per 10,000 population for females. Zika infections appeared to be highly clustered among females (73.8% (95% CI 72.6%, 75.0%; p<0.05)); age-adjusted Zika attack rates among females were 7.64 per 10,000 population compared with 2.72 per 10,000 population among males. R0 calculations stratified by sex also showed a significantly higher metric among females: 1.84 (1.82, 1.87; p<0.05) when compared to males at 1.72 (1.69, 1.75; p<0.05). However, GBS attack rates stratified by sex revealed slightly higher risk in males vs. females, at 0.62 and 0.57 per 10,000 population respectively.CONCLUSIONS/ SIGNIFICANCE: Evidence suggests little impact of existing dengue immunity on reported attack rates of Zika at the population level. Confounding of R0 and incident risk calculations by sex-specific over-reporting can alter the reliability of epidemiological metrics, which could be addressed using associated proxy syndromes or conditions to explore seemingly sex-skewed incidence. The findings indicate that community awareness campaigns, through influencing short-term health seeking behaviour, remain the most plausible mechanism behind increased reporting among women of reproductive age, although biological susceptibility cannot yet be ruled out. Media campaigns and screening are therefore recommended for women of reproductive age during Zika outbreaks. Future research should focus on clinical Zika outcomes among dengue seropositive individuals.
  • Colon-Gonzalez, J. Felipe, et al. (författare)
  • Projecting the risk of mosquito-borne diseases in a warmer and more populated world : a multi-model, multi-scenario intercomparison modelling study
  • 2021
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 5:7, s. E404-E414
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mosquito-borne diseases are expanding their range, and re-emerging in areas where they had subsided for decades. The extent to which climate change influences the transmission suitability and population at risk of mosquito-borne diseases across different altitudes and population densities has not been investigated. The aim of this study was to quantify the extent to which climate change will influence the length of the transmission season and estimate the population at risk of mosquito-borne diseases in the future, given different population densities across an altitudinal gradient.Methods: Using a multi-model multi-scenario framework, we estimated changes in the length of the transmission season and global population at risk of malaria and dengue for different altitudes and population densities for the period 1951-99. We generated projections from six mosquito-borne disease models, driven by four global circulation models, using four representative concentration pathways, and three shared socioeconomic pathways.Findings: We show that malaria suitability will increase by 1·6 additional months (mean 0·5, SE 0·03) in tropical highlands in the African region, the Eastern Mediterranean region, and the region of the Americas. Dengue suitability will increase in lowlands in the Western Pacific region and the Eastern Mediterranean region by 4·0 additional months (mean 1·7, SE 0·2). Increases in the climatic suitability of both diseases will be greater in rural areas than in urban areas. The epidemic belt for both diseases will expand towards temperate areas. The population at risk of both diseases might increase by up to 4·7 additional billion people by 2070 relative to 1970-99, particularly in lowlands and urban areas.Interpretation: Rising global mean temperature will increase the climatic suitability of both diseases particularly in already endemic areas. The predicted expansion towards higher altitudes and temperate regions suggests that outbreaks can occur in areas where people might be immunologically naive and public health systems unprepared. The population at risk of malaria and dengue will be higher in densely populated urban areas in the WHO African region, South-East Asia region, and the region of the Americas, although we did not account for urban-heat island effects, which can further alter the risk of disease transmission.
  • DiSera, Laurel, et al. (författare)
  • The Mosquito, the Virus, the Climate : An Unforeseen Réunion in 2018
  • 2020
  • Ingår i: GeoHealth. - : John Wiley & Sons. - 2471-1403. ; 4:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2018 outbreak of dengue in the French overseas department of Réunion was unprecedented in size and spread across the island. This research focuses on the cause of the outbreak, asserting that climate played a large role in the proliferation of the Aedes albopictus mosquitoes, which transmitted the disease, and led to the dengue outbreak in early 2018. A stage‐structured model was run using observed temperature and rainfall data to simulate the life cycle and abundance of the Ae. albopictus mosquito. Further, the model was forced with bias‐corrected subseasonal forecasts to determine if the event could have been forecast up to 4 weeks in advance. With unseasonably warm temperatures remaining above 25°C, along with large tropical‐cyclone‐related rainfall events accumulating 10–15 mm per event, the modeled Ae. albopictus mosquito abundance did not decrease during the second half of 2017, contrary to the normal behavior, likely contributing to the large dengue outbreak in early 2018. Although subseasonal forecasts of rainfall for the December–January period in Réunion are skillful up to 4 weeks in advance, the outbreak could only have been forecast 2 weeks in advance, which along with seasonal forecast information could have provided enough time to enhance preparedness measures. Our research demonstrates the potential of using state‐of‐the‐art subseasonal climate forecasts to produce actionable subseasonal dengue predictions. To the best of the authors' knowledge, this is the first time subseasonal forecasts have been used this way.
  • Doum, Dyna, et al. (författare)
  • Dengue Seroprevalence and Seroconversion in Urban and Rural Populations in Northeastern Thailand and Southern Laos
  • 2020
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI. - 1661-7827 .- 1660-4601. ; 17:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Dengue is the most rapidly spreading mosquito-borne viral disease in the world. The detection of clinical cases enables us to measure the incidence of dengue infection, whereas serological surveys give insights into the prevalence of infection. This study aimed to determine dengue seroprevalence and seroconversion rates in northeastern Thailand and southern Laos and to assess any association of mosquito control methods and socioeconomic factors with dengue virus (DENV) infection. Cross-sectional seroprevalence surveys were performed in May and November 2019 on the same individuals. Blood samples were collected from one adult and one child, when possible, in each of 720 randomly selected households from two urban and two rural sites in both northeastern Thailand and southern Laos. IgG antibodies against DENV were detected in serum using a commercial enzyme-linked immunosorbent assay (ELISA) kit. Overall, 1071 individuals participated in the study. The seroprevalence rate was high (91.5%) across all 8 study sites. Only age and province were associated with seroprevalence rates. There were 33 seroconversions during the period from May to November, of which seven reported fever. More than half of the seroconversions occurred in the rural areas and in Laos. Dengue seroconversion was significantly associated with young age (<15 years old), female gender, province, and duration of living in the current residence. No socioeconomic factors or mosquito control methods were found to be associated with seroprevalence or seroconversion. Notably, however, the province with most seroconversions had lower diurnal temperature ranges than elsewhere. In conclusion, our study has highlighted the homogeneity of dengue exposure across a wide range of settings and most notably those from rural and urban areas. Dengue can no longer be considered to be solely an urban disease nor necessarily one linked to poverty.
  • Karlsson, Oskar, et al. (författare)
  • The human exposome and health in the Anthropocene
  • 2021
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press. - 0300-5771 .- 1464-3685. ; 50:2, s. 378-389
  • Tidskriftsartikel (refereegranskat)
  • Kien, Tran Mai, et al. (författare)
  • Climate Services For Infectious Disease Control: A Nexus Between Public Health Preparedness and Sustainable Development, Lessons Learned From Long-Term Multi Site Time Series Analysis of Dengue Fever in Vietnam
  • 2016
  • Ingår i: International conference on public health: Accelerating the achievement of sustainable development goals for the improvement and equitable distribution of population health. ; , s. 83-84
  • Konferensbidrag (övrigt vetenskapligt)abstract
    • Background: Climate Services provide valuable information for making actionable, data-driven decisions to protect public health in a myriad of manners. There is mounting global evidence of the looming threat climate change poses to human health, including the variability and intensity of infectious disease outbreaks in Vietnam and other low-resource and developing areas. In light of the Sustainable Development Goals, lessons learned from time-series analysis may inform public health preparedness strategies for sustainable urban development in terms of dengue epidemiology, surveillance, control, and early warnings.Subjects and Methods: Nearly 40 years of spatial and temporal (times-series) dataset of meteorological records, including rainfall, temperature, and humidity (among others) which can be predictors of dengue were assembled for all provinces of Vietnam and associated with case data reported to General Department of Preventive Medicine, Ministry of Health of Vietnam during the same period. Time series of climate and disease variables was analyzed for trends and changing patterns of those variables over time. The time-series statistical analysis methods sought to identify spatial (when possible) and temporal trends, seasonality, cyclical patterns of disease, and to discover anomalous outbreak events, which departed from expected epidemiological patterns and corresponding meteorological phenomena, such as El Nino Southern Oscillation (ENSO).Results: Analysis yielded largely conserved finding with other locations in South East Asia for larger Outbreak years and events such as ENSO. Seasonality, trend, and cycle in many provinces were persistent throughout the dataset, indicating strong potential for Climate Services to be used in dengue early warnings.Conclusion: Even public health practitioners, having adequate tools for dengue control available must plan and budget vector control and patient treatment efforts well in advance of large scale dengue epidemics to curb such events overall morbidity and mortality. Similarly, urban and sustainable development in Vietnam might benefit from evidence linking climate change, and ill-health events spatially and temporally in future planning. Long term analysis of dengue case data and meteorological records, provided a cases study evidence for emerging opportunities that on how refined climate services could contribute to protection of public health.
  • Landrigan, Philip J., et al. (författare)
  • Human Health and Ocean Pollution
  • 2020
  • Ingår i: Annals of Global Health. - : Ubiquity Press. - 2214-9996. ; 86:1
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood.Goals: (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health.Methods: Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention.Environmental Findings: Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths.Ecosystem Findings: Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks.Human Health Findings: Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale.Conclusions: Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted. Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored. Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries.Recommendations: World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health. Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress. Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries. Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 48
  • [1]2345Nästa
Typ av publikation
tidskriftsartikel (36)
forskningsöversikt (7)
konferensbidrag (2)
doktorsavhandling (2)
annan publikation (1)
Typ av innehåll
refereegranskat (40)
övrigt vetenskapligt (8)
Rocklöv, Joacim, Pro ... (47)
Tozan, Yesim (11)
Semenza, Jan C (10)
Wilder-Smith, Anneli ... (8)
Sjödin, Henrik (7)
Lowe, Rachel (7)
visa fler...
Sewe, Maquins Odhiam ... (6)
Ramadona, Aditya Lia (6)
Dubrow, Robert (5)
Drummond, Paul (5)
Dasandi, Niheer (5)
Byass, Peter (4)
Costello, Anthony (4)
Moradi-Lakeh, Maziar (4)
Robinson, Elizabeth (4)
Kniveton, Dominic (4)
Kjellstrom, Tord (4)
Gong, Peng (4)
Belesova, Kristine (4)
Graham, Hilary (4)
Nilsson, Maria, 1957 ... (4)
Ebi, Kristie L. (4)
Hamilton, Ian (4)
Davies, Michael (4)
Liu, Ying (4)
Trinãnes, Joaquin (4)
Kelman, Ilan (4)
Lazuardi, Lutfan (4)
Wilkinson, Paul (4)
Lemke, Bruno (4)
Owfi, Fereidoon (4)
Tabatabaei, Meisam (4)
Escobar, Luis E. (4)
Watts, Nick (4)
Campbell-Lendrum, Di ... (4)
Shumake-Guillemot, J ... (4)
Arnell, Nigel (4)
Ayeb-Karlsson, Sonja (4)
Cai, Wenjia (4)
Chambers, Jonathan (4)
Ekins, Paul (4)
Georgeson, Lucien (4)
Hartinger, Stella (4)
Hess, Jeremy (4)
Kiesewetter, Gregor (4)
Lott, Melissa (4)
Martinez-Urtaza, Jai ... (4)
Maslin, Mark (4)
McAllister, Lucy (4)
Milner, James (4)
visa färre...
Umeå universitet (48)
Uppsala universitet (1)
Stockholms universitet (1)
Engelska (48)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (44)
Naturvetenskap (5)
Samhällsvetenskap (1)


Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy