SwePub
Sök i SwePub databas

  form:Ext_t

Träfflista för sökning "WFRF:(Rodan Aylin R.) "

form:Search_simp_t: WFRF:(Rodan Aylin R.)

  • navigation:Result_t 1-2 navigation:of_t 2
hitlist:Modify_result_t
   
hitlist:Enumeration_thitlist:Reference_thitlist:Reference_picture_thitlist:Find_Mark_t
1.
  • Al-Rabadi, Laith Farah, et al. (creator_code:aut_t)
  • Serine Protease HTRA1 as a Novel Target Antigen in Primary Membranous Nephropathy
  • 2021
  • record:In_t: Journal of the American Society of Nephrology. - : American Society of Nephrology (ASN). - 1046-6673 .- 1533-3450. ; 32:7, s. 1666-1681
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Background Identification of target antigens PLA2R, THSD7A, NELL1, or Semaphorin-3B can explain the majority of cases of primary membranous nephropathy (MN). However, target antigens remain unidentified in 15%-20% of patients. Methods A multipronged approach, using traditional and modern technologies, converged on a novel target antigen, and capitalized on the temporal variation in autoantibody titer for biomarker discovery. Immunoblotting of human glomerular proteins followed by differential immunoprecipitation and mass spectrometric analysis was complemented by laser-capture microdissection followed by mass spectrometry, elution of immune complexes from renal biopsy specimen tissue, and autoimmune profiling on a protein fragment microarray. Results These approaches identified serine protease HTRA1 as a novel podocyte antigen in a subset of patients with primary MN. Sera from two patients reacted by immunoblotting with a 51-kD protein within glomerular extract and with recombinant human HTRA1, under reducing and nonreducing conditions. Longitudinal serum samples from these patients seemed to correlate with clinical disease activity. As in PLA2R- and THSD7A- associated MN, anti-HTRA1 antibodies were predominantly IgG4, suggesting a primary etiology. Analysis of sera collected during active disease versus remission on protein fragment microarrays detected significantly higher titers of anti-HTRA1 antibody in active disease. HTRA1 was specifically detected within immune deposits of HTRA1-associated MN in 14 patients identified among three cohorts. Screening of 118 "quadruple-negative" (PLA2R-, THSD7A-, NELL1-, EXT2-negative) patients in a large repository of MN biopsy specimens revealed a prevalence of 4.2%. Conclusions Conventional and more modern techniques converged to identify serine protease HTRA1 as a target antigen in MN.
  •  
2.
  • Mahajan, Anubha, et al. (creator_code:aut_t)
  • Trans-ethnic Fine Mapping Highlights Kidney-Function Genes Linked to Salt Sensitivity
  • 2016
  • record:In_t: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 99:3, s. 636-646
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • We analyzed genome-wide association studies (GWASs), including data from 71,638 individuals from four ancestries, for estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We identified 20 loci attaining genome-wide-significant evidence of association (p < 5 × 10(-8)) with kidney function and highlighted that allelic effects on eGFR at lead SNPs are homogeneous across ancestries. We leveraged differences in the pattern of linkage disequilibrium between diverse populations to fine-map the 20 loci through construction of "credible sets" of variants driving eGFR association signals. Credible variants at the 20 eGFR loci were enriched for DNase I hypersensitivity sites (DHSs) in human kidney cells. DHS credible variants were expression quantitative trait loci for NFATC1 and RGS14 (at the SLC34A1 locus) in multiple tissues. Loss-of-function mutations in ancestral orthologs of both genes in Drosophila melanogaster were associated with altered sensitivity to salt stress. Renal mRNA expression of Nfatc1 and Rgs14 in a salt-sensitive mouse model was also reduced after exposure to a high-salt diet or induced CKD. Our study (1) demonstrates the utility of trans-ethnic fine mapping through integration of GWASs involving diverse populations with genomic annotation from relevant tissues to define molecular mechanisms by which association signals exert their effect and (2) suggests that salt sensitivity might be an important marker for biological processes that affect kidney function and CKD in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • navigation:Result_t 1-2 navigation:of_t 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt tools:Close_t

tools:Permalink_label_t