SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roldin Pontus) ;pers:(Bilde Merete)"

Sökning: WFRF:(Roldin Pontus) > Bilde Merete

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Linjie, et al. (författare)
  • Gas-to-Particle Partitioning of Products from Ozonolysis of Δ3-Carene and the Effect of Temperature and Relative Humidity
  • 2024
  • Ingår i: Journal of Physical Chemistry A. - Malmö : IVL Svenska Miljöinstitutet. - 1089-5639 .- 1520-5215. ; 128:5, s. 918-928
  • Tidskriftsartikel (refereegranskat)abstract
    • Formation of oxidized products from Δ3-carene (C10H16) ozonolysis and their gas-to-particle partitioning at three temperatures (0, 10, and 20 °C) under dry conditions (<2% RH) and also at 10 °C under humid (78% RH) conditions were studied using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) combined with a filter inlet for gases and aerosols (FIGAERO). The Δ3-carene ozonolysis products detected by the FIGAERO-ToF-CIMS were dominated by semivolatile organic compounds (SVOCs). The main effect of increasing temperature or RH on the product distribution was an increase in fragmentation of monomer compounds (from C10 to C7 compounds), potentially via alkoxy scission losing a C3 group.The equilibrium partitioning coefficient estimated according to equilibrium partitioning theory shows that the measured SVOC products distribute more into the SOA phase as the temperature decreases from 20 to 10 and 0 °C and for most products as the RH increases from <2 to 78%. The temperature dependency of the saturation vapor pressure (above an assumed liquid state), derived from the partitioning method, also allows for a direct way to obtain enthalpy of vaporization for the detected species without accessibility of authentic standards of the pure substances. This method can provide physical properties, beneficial for, e.g., atmospheric modeling, of complex multifunctional oxidation products.
  •  
2.
  • Luo, Yuanyuan, et al. (författare)
  • Formation and temperature dependence of highly oxygenated organic molecules (HOMs) from Δ3-carene ozonolysis
  • 2024
  • Ingår i: ATMOSPHERIC CHEMISTRY AND PHYSICS. - 1680-7316 .- 1680-7324. ; 24:16, s. 9459-9473
  • Tidskriftsartikel (refereegranskat)abstract
    • Delta(3)-carene is a prominent monoterpene in the atmosphere, contributing significantly to secondary organic aerosol (SOA) formation. However, knowledge about Delta(3)-carene oxidation pathways, particularly regarding their ability to form highly oxygenated organic molecules (HOMs), is still limited. In this study, we present HOM measurements during Delta(3)-carene ozonolysis under various conditions in two simulation chambers. We identified numerous HOMs (monomers: C7-10H10-18O6-14; dimers: C17-20H24-34O6-18) using a chemical ionization mass spectrometer (CIMS). Delta(3)-carene ozonolysis yielded higher HOM concentrations than alpha-pinene, with a distinct distribution, indicating differences in formation pathways. All HOM signals decreased considerably at lower temperatures, reducing the estimated molar HOM yield from similar to 3 % at 20 degrees C to similar to 0.5 % at 0 degrees C. Interestingly, the temperature change altered the HOM distribution, increasing the observed dimer-to-monomer ratios from roughly 0.8 at 20 degrees C to 1.5 at 0 degrees C. HOM monomers with six or seven O atoms condensed more efficiently onto particles at colder temperatures, while monomers with nine or more O atoms and all dimers condensed irreversibly even at 20 degrees C. Using the gas- and particle-phase chemistry kinetic multilayer model ADCHAM, we were also able to reproduce the experimentally observed HOM composition, yields, and temperature dependence.
  •  
3.
  • Quelever, Lauriane L.J., et al. (författare)
  • Effect of temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:11, s. 7609-7625
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly oxygenated organic molecules (HOMs) are important contributors to secondary organic aerosol (SOA) and new-particle formation (NPF) in the boreal atmosphere. This newly discovered class of molecules is efficiently formed from atmospheric oxidation of biogenic volatile organic compounds (VOCs), such as monoterpenes, through a process called autoxidation. This process, in which peroxy-radical intermediates isomerize to allow addition of molecular oxygen, is expected to be highly temperature-dependent. Here, we studied the dynamics of HOM formation during α-pinene ozonolysis experiments performed at three different temperatures, 20, 0 and -15 ĝC, in the Aarhus University Research on Aerosol (AURA) chamber. We found that the HOM formation, under our experimental conditions (50 ppb α-pinene and 100 ppb ozone), decreased considerably at lower temperature, with molar yields dropping by around a factor of 50 when experiments were performed at 0 ĝC, compared to 20 ĝC. At -15 ĝC, the HOM signals were already close to the detection limit of the nitrate-based chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer used for measuring gas-phase HOMs. Surprisingly, comparing spectra measured at 0 and 20 ĝC, ratios between HOMs of different oxidation levels, e.g., the typical HOM products C10H14O7, C10H14O9, and C10H14O11, changed considerably less than the total HOM yields. More oxidized species have undergone more isomerization steps; yet, at lower temperature, they did not decrease more than the less oxidized species. One possible explanation is that the primary rate-limiting steps forming these HOMs occur before the products become oxygenated enough to be detected by our CI-APi-TOF (i.e., typically seven or more oxygen atoms). The strong temperature dependence of HOM formation was observed under temperatures highly relevant to the boreal forest, but the exact magnitude of this effect in the atmosphere will be much more complex: the fate of peroxy radicals is a competition between autoxidation (influenced by temperature and VOC type) and bimolecular termination pathways (influenced mainly by concentration of reaction partners). While the temperature influence is likely smaller in the boreal atmosphere than in our chamber, both the magnitude and complexity of this effect clearly deserve more consideration in future studies in order to estimate the ultimate role of HOMs on SOA and NPF under different atmospheric conditions.
  •  
4.
  • Rosati, Bernadette, et al. (författare)
  • New Particle Formation and Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals
  • 2021
  • Ingår i: ACS Earth and Space Chemistry. - : American Chemical Society (ACS). - 2472-3452. ; 5:4, s. 801-811
  • Tidskriftsartikel (refereegranskat)abstract
    • Dimethyl sulfide (DMS) is produced by plankton in oceans and constitutes the largest natural emission of sulfur to the atmosphere. In this work, we examine new particle formation from the primary pathway of oxidation of gas-phase DMS by OH radicals. We particularly focus on particle growth and mass yield as studied experimentally under dry conditions using the atmospheric simulation chamber AURA. Experimentally, we show that aerosol mass yields from oxidation of 50-200 ppb of DMS are low (2-7%) and that particle growth rates (8.2-24.4 nm/h) are comparable with ambient observations. An HR-ToF-AMS was calibrated using methanesulfonic acid (MSA) to account for fragments distributed across both the organic and sulfate fragmentation table. AMS-derived chemical compositions revealed that MSA was always more dominant than sulfate in the secondary aerosols formed. Modeling using the Aerosol Dynamics, gas- and particle-phase chemistry kinetic multilayer model for laboratory CHAMber studies (ADCHAM) indicates that the Master Chemical Mechanism gas-phase chemistry alone underestimates experimentally observed particle formation and that DMS multiphase and autoxidation chemistry is needed to explain observations. Based on quantum chemical calculations, we conclude that particle formation from DMS oxidation in the ambient atmosphere will most likely be driven by mixed sulfuric acid/MSA clusters clustering with both amines and ammonia.
  •  
5.
  • Rosati, Bernadette, et al. (författare)
  • The impact of atmospheric oxidation on hygroscopicity and cloud droplet activation of inorganic sea spray aerosol
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sea spray aerosol (SSA) contributes significantly to natural aerosol particle concentrations globally, in marine areas even dominantly. The potential changes of the omnipresent inorganic fraction of SSA due to atmospheric ageing is largely unexplored. In the atmosphere, SSA may exist as aqueous phase solution droplets or as dried solid or amorphous particles. We demonstrate that ageing of liquid NaCl and artificial sea salt aerosol by exposure to ozone and UV light leads to a substantial decrease in hygroscopicity and cloud activation potential of the dried particles of the same size. The results point towards surface reactions on the liquid aerosols that are more crucial for small particles and the formation of salt structures with water bound within the dried aerosols, termed hydrates. Our findings suggest an increased formation of hydrate forming salts during ageing and the presence of hydrates in dried SSA. Field observations indicate a reduced hygroscopic growth factor of sub-micrometre SSA in the marine atmosphere compared to fresh laboratory generated NaCl or sea salt of the same dry size, which is typically attributed to organic matter or sulphates. Aged inorganic sea salt offers an additional explanation for such a measured reduced hygroscopic growth factor and cloud activation potential.
  •  
6.
  • Thomsen, Ditte, et al. (författare)
  • The effect of temperature and relative humidity on secondary organic aerosol formation from ozonolysis of Δ3-carene
  • 2024
  • Ingår i: Environmental Science. - Malmö : IVL Svenska Miljöinstitutet. - 2634-3606. ; 4:1, s. 88-103
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the effects of temperature and relative humidity (RH) on the formation of secondary organic aerosol (SOA) from D3-carene, a prevalent monoterpene in boreal forests. Dark ozonolysis experiments of 10 ppb D3-carene were conducted in the Aarhus University Research on Aerosol (AURA) atmospheric simulation chamber at temperatures of 0, 10, and 20 °C. Under dry conditions (RH < 2%), the SOA formation in terms of both particle number and mass concentration shows minimal temperature dependence. This is in contrast to previous findings at higher initial concentrations and suggests an effect of VOC loading for D3-carene. Interestingly, the mass fraction of key oxidation products (cis-3-caric acid, cis-3-caronic acid) exhibit a temperature dependence suggesting continuous condensation at lower temperatures, while evaporation and further reactions over time become more favourable at higher temperatures.The oxygen-to-carbon ratios in the particle phase and the occurrence of highly oxygenated organic molecules (HOM) in the gas phase show modest increases with higher temperatures. Predictions from the Aerosol Dynamics and Gas- and Particle-Phase Chemistry Kinetic Multilayer Model (ADCHAM) agrees with the experimental results regarding both physical particle properties and aerosol composition considering theexperimental uncertainties. At high RH (∼80%, 10 °C), a considerable increase in the particle nucleation rate and particle number concentration is observed compared to experiments under dry conditions. This is likely due to enhanced particle nucleation resulting from more stable cluster formation of water and inorganics at increased RH. However, RH does not affect the particle mass concentration.
  •  
7.
  • Wollesen De Jonge, Robin, et al. (författare)
  • Secondary aerosol formation from dimethyl sulfide-improved mechanistic understanding based on smog chamber experiments and modelling
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:13, s. 9955-9976
  • Tidskriftsartikel (refereegranskat)abstract
    • Dimethyl sulfide (DMS) is the dominant biogenic sulfur compound in the ambient marine atmosphere. Low-volatility acids from DMS oxidation promote the formation and growth of sulfur aerosols and ultimately alter cloud properties and Earth's climate. We studied the OH-initiated oxidation of DMS in the Aarhus University Research on Aerosol (AURA) smog chamber and the marine boundary layer (MBL) with the aerosol dynamics and gas-and particle-phase chemistry kinetic multilayer model ADCHAM. Our work involved the development of a revised and comprehensive multiphase DMS oxidation mechanism, capable of both reproducing smog chamber and atmospheric relevant conditions. The secondary aerosol mass yield in the AURA chamber was found to have a strong dependence on the reaction of methyl sulfinic acid (MSIA) and OH, causing a 82.8% increase in the total PM at low relative humidity (RH), while the autoxidation of the intermediate radical CH3SCH2OO forming hydroperoxymethyl thioformate (HPMTF) proved important at high temperature and RH, decreasing the total PM by 55.8%. The observations and modelling strongly support the finding that a liquid water film existed on the Teflon surface of the chamber bag, which enhanced the wall loss of water-soluble intermediates and oxidants dimethyl sulfoxide (DMSO), MSIA, HPMTF, SO2, methanesulfonic acid (MSA), sulfuric acid (SA) and H2O2. The effect caused a 64.8% and 91.7% decrease in the secondary aerosol mass yield obtained at both dry (0%RH-12%RH) and humid (50%RH-80%RH) conditions, respectively. Model runs reproducing the ambient marine atmosphere indicate that OH comprises a strong sink of DMS in the MBL (accounting for 31.1% of the total sink flux of DMS) although less important than the combined effect of halogen species Cl and BrO (accounting for 24.3% and 38.7%, respectively). Cloudy conditions promote the production of SO42-particular mass (PM) from SO2 accumulated in the gas phase, while cloud-free periods facilitate MSA formation in the deliquesced particles. The exclusion of aqueous-phase chemistry lowers the DMS sink as no halogens are activated in the sea spray particles and underestimates the secondary aerosol mass yield by neglecting SO42-and MSA PM production in the particle phase. Overall, this study demonstrated that the current DMS oxidation mechanisms reported in literature are inadequate in reproducing the results obtained in the AURA chamber, whereas the revised chemistry captured the formation, growth and chemical composition of the formed aerosol particles well. Furthermore, we emphasize the importance of OH-initiated oxidation of DMS in the ambient marine atmosphere during conditions with low sea spray emissions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy