SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roldin Pontus) ;pers:(Kulmala Markku)"

Sökning: WFRF:(Roldin Pontus) > Kulmala Markku

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bianchi, Federico, et al. (författare)
  • Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals : A Key Contributor to Atmospheric Aerosol
  • 2019
  • Ingår i: Chemical Reviews. - : American Chemical Society (ACS). - 0009-2665 .- 1520-6890. ; 119:6, s. 3472-3509
  • Forskningsöversikt (refereegranskat)abstract
    • Highly oxygenated organic molecules (HOM) are formed in the atmosphere via autoxidation involving peroxy radicals arising from volatile organic compounds (VOC). HOM condense on pre-existing particles and can be involved in new particle formation. HOM thus contribute to the formation of secondary organic aerosol (SOA), a significant and ubiquitous component of atmospheric aerosol known to affect the Earths radiation balance. HOM were discovered only very recently, but the interest in these compounds has grown rapidly. In this Review, we define HOM and describe the currently available techniques for their identification/quantification, followed by a summary of the current knowledge on their formation mechanisms and physicochemical properties. A main aim is to provide a common frame for the currently quite fragmented literature on HOM studies. Finally, we highlight the existing gaps in our understanding and suggest directions for future HOM research.
  •  
2.
  • Boy, Michael, et al. (författare)
  • Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates
  • 2022
  • Ingår i: npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A multitude of biogeochemical feedback mechanisms govern the climate sensitivity of Earth in response to radiation balance perturbations. One feedback mechanism, which remained missing from most current Earth System Models applied to predict future climate change in IPCC AR6, is the impact of higher temperatures on the emissions of biogenic volatile organic compounds (BVOCs), and their subsequent effects on the hydroxyl radical (OH) concentrations. OH, in turn, is the main sink term for many gaseous compounds including methane, which is the second most important human-influenced greenhouse gas in terms of climate forcing. In this study, we investigate the impact of this feedback mechanism by applying two models, a one-dimensional chemistry-transport model, and a global chemistry-transport model. The results indicate that in a 6 K temperature increase scenario, the BVOC-OH-CH4 feedback increases the lifetime of methane by 11.4% locally over the boreal region when the temperature rise only affects chemical reaction rates, and not both, chemistry and BVOC emissions. This would lead to a local increase in radiative forcing through methane (ΔRFCH4) of approximately 0.013 Wm−2 per year, which is 2.1% of the current ΔRFCH4. In the whole Northern hemisphere, we predict an increase in the concentration of methane by 0.024% per year comparing simulations with temperature increase only in the chemistry or temperature increase in chemistry and BVOC emissions. This equals approximately 7% of the annual growth rate of methane during the years 2008–2017 (6.6 ± 0.3 ppb yr−1) and leads to an ΔRFCH4 of 1.9 mWm−2 per year.
  •  
3.
  • Chen, Dean, et al. (författare)
  • A modelling study of OH, NO3 and H2SO4 in 2007- 2018 at SMEAR II, Finland : Analysis of long-term trends
  • 2021
  • Ingår i: Environmental Science: Atmospheres. - : Royal Society of Chemistry (RSC). - 2634-3606. ; 1:6, s. 449-472
  • Tidskriftsartikel (refereegranskat)abstract
    • Major atmospheric oxidants (OH,O3 and NO3) dominate the atmospheric oxidation capacity, while H2SO4 is considered as a main driver for new particle formation. Although numerous studies have investigated the long-term trend of ozone in Europe, the trends of OH, NO3 and H2SO4 at specific sites are to a large extent unknown. The one-dimensional model SOSAA has been applied in several studies at the SMEAR II station and has been validated by measurements in several projects. Here, we applied the SOSAA model for the years 2007-2018 to simulate the atmospheric chemical components, especially the atmospheric oxidants OH and NO3, as well as H2SO4 at SMEAR II. The simulations were evaluated with observations from several shorter and longer campaigns at SMEAR II. Our results show that daily OH increased by 2.39% per year and NO3 decreased by 3.41% per year, with different trends of these oxidants during day and night. On the contrary, daytime sulfuric acid concentrations decreased by 2.78% per year, which correlated with the observed decreasing concentration of newly formed particles in the size range of 3- 25 nm with 1.4% per year at SMEAR II during the years 1997-2012. Additionally, we compared our simulated OH, NO3 and H2SO4 concentrations with proxies, which are commonly applied in case a limited number of parameters are measured and no detailed model simulations are available.
  •  
4.
  •  
5.
  • Hao, Liqing, et al. (författare)
  • Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:23, s. 17705-17716
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing aerosol chemical composition in response to meteorological changes and atmospheric chemistry is important to gain insights into new particle formation mechanisms. A BAECC (Biogenic Aerosols - Effects on Clouds and Climate) campaign was conducted during the spring 2014 at the SMEAR II station (Station for Measuring Forest Ecosystem-Aerosol Relations) in Finland. The particles were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A PBL (planetary boundary layer) dilution model was developed to assist interpreting the measurement results. Right before nucleation events, the mass concentrations of organic and sulfate aerosol species were both decreased rapidly along with the growth of PBL heights. However, the mass fraction of sulfate aerosol of the total aerosol mass was increased, in contrast to a decrease for the organic mass fraction. Meanwhile, an increase in LVOOA (low-volatility oxygenated organic aerosol) mass fraction of the total organic mass was observed, in distinct comparison to a reduction of SVOOA (semi-volatile OOA) mass fraction. Our results demonstrate that, at the beginning of nucleation events, the observed sulfate aerosol mass was mainly driven by vertical turbulent mixing of sulfate-rich aerosols between the residual layer and the newly formed boundary layer, while the condensation of sulfuric acid (SA) played a minor role in interpreting the measured sulfate mass concentration. For the measured organic aerosols, their temporal profiles were mainly driven by dilution from PBL development, organic aerosol mixing in different boundary layers and/or partitioning of organic vapors, but accurate measurements of organic vapor concentrations and characterization on the spatial aerosol chemical composition are required. In general, the observed aerosol particles by AMS are subjected to joint effects of PBL dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During aerosol growth periods in the nighttime, the mass concentrations of organic aerosols and organic nitrate aerosols were both increased. The increase in SVOOA mass correlated well with the calculated increase in condensed HOMs' (highly oxygenated organic molecules) mass. To our knowledge, our results are the first atmospheric observations showing a connection between increase in SVOOA and condensed HOMs during the nighttime.
  •  
6.
  • Kalivitis, Nikos, et al. (författare)
  • Formation and growth of atmospheric nanoparticles in the eastern Mediterranean : Results from long-term measurements and process simulations
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:4, s. 2671-2686
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric new particle formation (NPF) is a common phenomenon all over the world. In this study we present the longest time series of NPF records in the eastern Mediterranean region by analyzing 10 years of aerosol number size distribution data obtained with a mobility particle sizer. The measurements were performed at the Finokalia environmental research station on Crete, Greece, during the period June 2008-June 2018. We found that NPF took place on 27 % of the available days, undefined days were 23 % and non-event days 50 %. NPF is more frequent in April and May probably due to the terrestrial biogenic activity and is less frequent in August. Throughout the period under study, nucleation was observed also during the night. Nucleation mode particles had the highest concentration in winter and early spring, mainly because of the minimum sinks, and their average contribution to the total particle number concentration was 8 %. Nucleation mode particle concentrations were low outside periods of active NPF and growth, so there are hardly any other local sources of sub-25 nm particles. Additional atmospheric ion size distribution data simultaneously collected for more than 2 years were also analyzed. Classification of NPF events based on ion spectrometer measurements differed from the corresponding classification based on a mobility spectrometer, possibly indicating a different representation of local and regional NPF events between these two measurement data sets. We used the MALTE-Box model for simulating a case study of NPF in the eastern Mediterranean region. Monoterpenes contributing to NPF can explain a large fraction of the observed NPF events according to our model simulations. However the adjusted parameterization resulting from our sensitivity tests was significantly different from the initial one that had been determined for the boreal environment.
  •  
7.
  • Nie, Wei, et al. (författare)
  • NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere
  • 2023
  • Ingår i: Nature Communications. - Malmö : IVL Svenska Miljöinstitutet AB. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO2) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 – 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization.These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO2-NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the preindustrial atmosphere, pristine areas, and the upper boundary layer.
  •  
8.
  • Nordin, Erik, et al. (författare)
  • Smog Chamber Experiments of SOA Formation from Gasoline Exhaust and Light Aromatics
  • 2010
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Experiments where gasoline exhaust was exposed to UV-radiation to examine Secondary Organic Aerosol (SOA) formation were performed in a smog chamber. The Aerosol Mass Yield (formed SOA/reacted precursor mass) was determined and compared with the yield from a pure precursor experiment in the chamber and from results reported in literature. Preliminary results show that the majority of the organic aerosol mass emitted from idling gasoline cars is secondary. Further, the SOA yields when taking only C6-C10 light aromatics into account are within a similar range to pure precursor experiments, suggesting that light aromatics are dominating precursors in gasoline exhaust SOA.
  •  
9.
  •  
10.
  • Qi, Ximeng, et al. (författare)
  • Modelling studies of HOMs and their contributions to new particle formation and growth : Comparison of boreal forest in Finland and a polluted environment in China
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:16, s. 11779-11791
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly oxygenated multifunctional compounds (HOMs) play a key role in new particle formation (NPF), but their quantitative roles in different environments of the globe have not been well studied yet. Frequent NPF events were observed at two flagship stations under different environmental conditions, i.e. a remote boreal forest site (SMEAR II) in Finland and a suburban site (SORPES) in polluted eastern China. The averaged formation rate of 6 nm particles and the growth rate of 6-30 nm particles were 0.3 cm-3 s-1 and 4.5 nm h-1 at SMEAR II compared to 2.3 cm-3 s-1 and 8.7 nm h-1 at SORPES, respectively. To explore the differences of NPF at the two stations, the HOM concentrations and NPF events at two sites were simulated with the MALTE-BOX model, and their roles in NPF and particle growth in the two distinctly different environments are discussed. The model provides an acceptable agreement between the simulated and measured concentrations of sulfuric acid and HOMs at SMEAR II. The sulfuric acid and HOM organonitrate concentrations are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower at SORPES compared to SMEAR II. The model simulates the NPF events at SMEAR II with a good agreement but underestimates the growth of new particles at SORPES, indicating a dominant role of anthropogenic processes in the polluted environment. HOMs from monoterpene oxidation dominate the growth of ultrafine particles at SMEAR II while sulfuric acid and HOMs from aromatics oxidation play a more important role in particle growth. This study highlights the distinct roles of sulfuric acid and HOMs in NPF and particle growth in different environmental conditions and suggests the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas like eastern China.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy