SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roldin Pontus) ;pers:(Kurten Theo)"

Sökning: WFRF:(Roldin Pontus) > Kurten Theo

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bianchi, Federico, et al. (författare)
  • Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals : A Key Contributor to Atmospheric Aerosol
  • 2019
  • Ingår i: Chemical Reviews. - : American Chemical Society (ACS). - 0009-2665 .- 1520-6890. ; 119:6, s. 3472-3509
  • Forskningsöversikt (refereegranskat)abstract
    • Highly oxygenated organic molecules (HOM) are formed in the atmosphere via autoxidation involving peroxy radicals arising from volatile organic compounds (VOC). HOM condense on pre-existing particles and can be involved in new particle formation. HOM thus contribute to the formation of secondary organic aerosol (SOA), a significant and ubiquitous component of atmospheric aerosol known to affect the Earths radiation balance. HOM were discovered only very recently, but the interest in these compounds has grown rapidly. In this Review, we define HOM and describe the currently available techniques for their identification/quantification, followed by a summary of the current knowledge on their formation mechanisms and physicochemical properties. A main aim is to provide a common frame for the currently quite fragmented literature on HOM studies. Finally, we highlight the existing gaps in our understanding and suggest directions for future HOM research.
  •  
2.
  • Boy, Michael, et al. (författare)
  • Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates
  • 2022
  • Ingår i: npj Climate and Atmospheric Science. - : Springer Science and Business Media LLC. - 2397-3722. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A multitude of biogeochemical feedback mechanisms govern the climate sensitivity of Earth in response to radiation balance perturbations. One feedback mechanism, which remained missing from most current Earth System Models applied to predict future climate change in IPCC AR6, is the impact of higher temperatures on the emissions of biogenic volatile organic compounds (BVOCs), and their subsequent effects on the hydroxyl radical (OH) concentrations. OH, in turn, is the main sink term for many gaseous compounds including methane, which is the second most important human-influenced greenhouse gas in terms of climate forcing. In this study, we investigate the impact of this feedback mechanism by applying two models, a one-dimensional chemistry-transport model, and a global chemistry-transport model. The results indicate that in a 6 K temperature increase scenario, the BVOC-OH-CH4 feedback increases the lifetime of methane by 11.4% locally over the boreal region when the temperature rise only affects chemical reaction rates, and not both, chemistry and BVOC emissions. This would lead to a local increase in radiative forcing through methane (ΔRFCH4) of approximately 0.013 Wm−2 per year, which is 2.1% of the current ΔRFCH4. In the whole Northern hemisphere, we predict an increase in the concentration of methane by 0.024% per year comparing simulations with temperature increase only in the chemistry or temperature increase in chemistry and BVOC emissions. This equals approximately 7% of the annual growth rate of methane during the years 2008–2017 (6.6 ± 0.3 ppb yr−1) and leads to an ΔRFCH4 of 1.9 mWm−2 per year.
  •  
3.
  •  
4.
  • Kurtén, Theo, et al. (författare)
  • α-Pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O : C Ratios
  • 2016
  • Ingår i: The Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory. - : American Chemical Society (ACS). - 1089-5639. ; 120:16, s. 2569-2582
  • Tidskriftsartikel (refereegranskat)abstract
    • COSMO-RS (conductor-like screening model for real solvents) and three different group-contribution methods were used to compute saturation (subcooled) liquid vapor pressures for 16 possible products of ozone-initiated α-pinene autoxidation, with elemental compositions C10H16O4-10 and C20H30O10-12. The saturation vapor pressures predicted by the different methods varied widely. COSMO-RS predicted relatively high saturation vapor pressures values in the range of 10-6 to 10-10 bar for the C10H16O4-10 "monomers", and 10-11 to 10-16 bar for the C20H30O10-12 "dimmers". The group-contribution methods predicted significantly (up to 8 order of magnitude) lower saturation vapor pressures for most of the more highly oxidized monomers. For the dimers, the COSMO-RS predictions were within the (wide) range spanned by the three group-contribution methods. The main reason for the discrepancies between the methods is likely that the group-contribution methods do not contain the necessary parameters to accurately treat autoxidation products containing multiple hydroperoxide, peroxy acid or peroxide functional groups, which form intramolecular hydrogen bonds with each other. While the COSMO-RS saturation vapor pressures for these systems may be overestimated, the results strongly indicate that despite their high O:C ratios, the volatilities of the autoxidation products of α-pinene (and possibly other atmospherically relevant alkenes) are not necessarily extremely low. In other words, while autoxidation products are able to adsorb onto aerosol particles, their evaporation back into the gas phase cannot be assumed to be negligible, especially from the smallest nanometer-scale particles. Their observed effective contribution to aerosol particle growth may therefore involve rapid heterogeneous reactions (reactive uptake) rather than effectively irreversible physical absorption.
  •  
5.
  • Roldin, Pontus, et al. (författare)
  • The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Over Boreal regions, monoterpenes emitted from the forest are the main precursors for secondary organic aerosol (SOA) formation and the primary driver of the growth of new aerosol particles to climatically important cloud condensation nuclei (CCN). Autoxidation of monoterpenes leads to rapid formation of Highly Oxygenated organic Molecules (HOM). We have developed the first model with near-explicit representation of atmospheric new particle formation (NPF) and HOM formation. The model can reproduce the observed NPF, HOM gas-phase composition and SOA formation over the Boreal forest. During the spring, HOM SOA formation increases the CCN concentration by ~10 % and causes a direct aerosol radiative forcing of −0.10 W/m2. In contrast, NPF reduces the number of CCN at updraft velocities < 0.2 m/s, and causes a direct aerosol radiative forcing of +0.15 W/m2. Hence, while HOM SOA contributes to climate cooling, NPF can result in climate warming over the Boreal forest.
  •  
6.
  • Öström, Emilie, et al. (författare)
  • Modeling the role of highly oxidized multifunctional organic molecules for the growth of new particles over the boreal forest region
  • 2017
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:14, s. 8887-8901
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the processes behind observed new particle formation (NPF) events and subsequent organic-dominated particle growth at the Pallas Atmosphere-Ecosystem Supersite in Northern Finland are explored with the one-dimensional column trajectory model ADCHEM. The modeled sub-micron particle mass is up to ∼75 % composed of SOA formed from highly oxidized multifunctional organic molecules (HOMs) with low or extremely low volatility. In the model the newly formed particles with an initial diameter of 1.5 nm reach a diameter of 7 nm about 2 h earlier than what is typically observed at the station. This is an indication that the model tends to overestimate the initial particle growth. In contrast, the modeled particle growth to CCN size ranges (> 50 nm in diameter) seems to be underestimated because the increase in the concentration of particles above 50 nm in diameter typically occurs several hours later compared to the observations. Due to the high fraction of HOMs in the modeled particles, the oxygen-to-carbon (O : C) atomic ratio of the SOA is nearly 1. This unusually high O : C and the discrepancy between the modeled and observed particle growth might be explained by the fact that the model does not consider any particle-phase reactions involving semi-volatile organic compounds with relatively low O : C. In the model simulations where condensation of low-volatility and extremely low-volatility HOMs explain most of the SOA formation, the phase state of the SOA (assumed either liquid or amorphous solid) has an insignificant impact on the evolution of the particle number size distributions. However, the modeled particle growth rates are sensitive to the method used to estimate the vapor pressures of the HOMs. Future studies should evaluate how heterogeneous reactions involving semi-volatility HOMs and other less-oxidized organic compounds can influence the SOA composition- and size-dependent particle growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy