SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ropele Stefan) ;conttype:(refereed)"

Sökning: WFRF:(Ropele Stefan) > Refereegranskat

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
2.
  • Bonkhoff, Anna K, et al. (författare)
  • The relevance of rich club regions for functional outcome post-stroke is enhanced in women.
  • 2023
  • Ingår i: Human brain mapping. - : Wiley. - 1097-0193 .- 1065-9471. ; 44:4, s. 1579-1592
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to investigate the influence of stroke lesions in predefined highly interconnected (rich-club) brain regions on functional outcome post-stroke, determine their spatial specificity and explore the effects of biological sex on their relevance. We analyzed MRI data recorded at index stroke and ~3-months modified Rankin Scale (mRS) data from patients with acute ischemic stroke enrolled in the multisite MRI-GENIE study. Spatially normalized structural stroke lesions were parcellated into 108 atlas-defined bilateral (sub)cortical brain regions. Unfavorable outcome (mRS > 2) was modeled in a Bayesian logistic regression framework. Effects of individual brain regions were captured as two compound effects for (i) six bilateral rich club and (ii) all further non-rich club regions. In spatial specificity analyses, we randomized the split into "rich club" and "non-rich club" regions and compared the effect of the actual rich club regions to the distribution of effects from 1000 combinations of six random regions. In sex-specific analyses, we introduced an additional hierarchical level in our model structure to compare male and female-specific rich club effects. A total of 822 patients (age: 64.7[15.0], 39% women) were analyzed. Rich club regions had substantial relevance in explaining unfavorable functional outcome (mean of posterior distribution: 0.08, area under the curve: 0.8). In particular, the rich club-combination had a higher relevance than 98.4% of random constellations. Rich club regions were substantially more important in explaining long-term outcome in women than in men. All in all, lesions in rich club regions were associated with increased odds of unfavorable outcome. These effects were spatially specific and more pronounced in women.
  •  
3.
  • Bretzner, Martin, et al. (författare)
  • Radiomics-Derived Brain Age Predicts Functional Outcome After Acute Ischemic Stroke.
  • 2023
  • Ingår i: Neurology. - 1526-632X .- 0028-3878. ; 100:8, s. e822-e833
  • Tidskriftsartikel (refereegranskat)abstract
    • While chronological age is one of the most influential determinants of poststroke outcomes, little is known of the impact of neuroimaging-derived biological "brain age." We hypothesized that radiomics analyses of T2-FLAIR images texture would provide brain age estimates and that advanced brain age of patients with stroke will be associated with cardiovascular risk factors and worse functional outcomes.We extracted radiomics from T2-FLAIR images acquired during acute stroke clinical evaluation. Brain age was determined from brain parenchyma radiomics using an ElasticNet linear regression model. Subsequently, relative brain age (RBA), which expresses brain age in comparison with chronological age-matched peers, was estimated. Finally, we built a linear regression model of RBA using clinical cardiovascular characteristics as inputs and a logistic regression model of favorable functional outcomes taking RBA as input.We reviewed 4,163 patients from a large multisite ischemic stroke cohort (mean age = 62.8 years, 42.0% female patients). T2-FLAIR radiomics predicted chronological ages (mean absolute error = 6.9 years, r = 0.81). After adjustment for covariates, RBA was higher and therefore described older-appearing brains in patients with hypertension, diabetes mellitus, a history of smoking, and a history of a prior stroke. In multivariate analyses, age, RBA, NIHSS, and a history of prior stroke were all significantly associated with functional outcome (respective adjusted odds ratios: 0.58, 0.76, 0.48, 0.55; all p-values < 0.001). Moreover, the negative effect of RBA on outcome was especially pronounced in minor strokes.T2-FLAIR radiomics can be used to predict brain age and derive RBA. Older-appearing brains, characterized by a higher RBA, reflect cardiovascular risk factor accumulation and are linked to worse outcomes after stroke.
  •  
4.
  • Cullen, Nicholas C., et al. (författare)
  • Efficacy assessment of an active tau immunotherapy in Alzheimer's disease patients with amyloid and tau pathology : a post hoc analysis of the “ADAMANT” randomised, placebo-controlled, double-blind, multi-centre, phase 2 clinical trial
  • 2024
  • Ingår i: EBioMedicine. - 2352-3964. ; 99
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tau pathology correlates with and predicts clinical decline in Alzheimer's disease. Approved tau-targeted therapies are not available. Methods: ADAMANT, a 24-month randomised, placebo-controlled, parallel-group, double-blinded, multicenter, Phase 2 clinical trial (EudraCT2015-000630-30, NCT02579252) enrolled 196 participants with Alzheimer's disease; 119 are included in this post-hoc subgroup analysis. AADvac1, active immunotherapy against pathological tau protein. A machine learning model predicted likely Amyloid+Tau+ participants from baseline MRI. Statistical methods: MMRM for change from baseline in cognition, function, and neurodegeneration; linear regression for associations between antibody response and endpoints. Results: The prediction model achieved PPV of 97.7% for amyloid, 96.2% for tau. 119 participants in the full analysis set (70 treatment and 49 placebo) were classified as A+T+. A trend for CDR-SB 104-week change (estimated marginal means [emm] = −0.99 points, 95% CI [−2.13, 0.13], p = 0.0825]) and ADCS-MCI-ADL (emm = 3.82 points, CI [−0.29, 7.92], p = 0.0679) in favour of the treatment group was seen. Reduction was seen in plasma NF-L (emm = −0.15 log pg/mL, CI [−0.27, −0.03], p = 0.0139). Higher antibody response to AADvac1 was related to slowing of decline on CDR-SB (rho = −0.10, CI [−0.21, 0.01], p = 0.0376) and ADL (rho = 0.15, CI [0.03, 0.27], p = 0.0201), and related to slower brain atrophy (rho = 0.18–0.35, p < 0.05 for temporal volume, whole cortex, and right and left hippocampus). Conclusions: In the subgroup of ML imputed or CSF identified A+T+, AADvac1 slowed AD-related decline in an antibody-dependent manner. Larger anti-tau trials are warranted. Funding: AXON Neuroscience SE.
  •  
5.
  • De Guio, François, et al. (författare)
  • Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease
  • 2016
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - 0271-678X. ; 36:8, s. 1319-1337
  • Forskningsöversikt (refereegranskat)abstract
    • Brain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility of these small vessel disease markers has received little attention despite being widely used in cross-sectional and longitudinal studies. This review focuses on the main small vessel disease-related markers on magnetic resonance imaging including: white matter hyperintensities, lacunes, dilated perivascular spaces, microbleeds, and brain volume. The aim is to summarize, for each marker, what is currently known about: (1) its reproducibility in studies with a scan-rescan procedure either in single or multicenter settings; (2) the acquisition-related sources of variability; and, (3) the techniques used to minimize this variability. Based on the results, we discuss technical and other challenges that need to be overcome in order for these markers to be reliably used as outcome measures in future clinical trials. We also highlight the key points that need to be considered when designing multicenter magnetic resonance imaging studies of small vessel disease.
  •  
6.
  • Dyrby, Tim B, et al. (författare)
  • Segmentation of age-related white matter changes in a clinical multi-center study.
  • 2008
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119. ; 41:2, s. 335-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related white matter changes (WMC) are thought to be a marker of vascular pathology, and have been associated with motor and cognitive deficits. In the present study, an optimized artificial neural network was used as an automatic segmentation method to produce probabilistic maps of WMC in a clinical multi-center study. The neural network uses information from T1- and T2-weighted and fluid attenuation inversion recovery (FLAIR) magnetic resonance (MR) scans, neighboring voxels and spatial location. Generalizability of the neural network was optimized by including the Optimal Brain Damage (OBD) pruning method in the training stage. Six optimized neural networks were produced to investigate the impact of different input information on WMC segmentation. The automatic segmentation method was applied to MR scans of 362 non-demented elderly subjects from 11 centers in the European multi-center study Leukoaraiosis And Disability (LADIS). Semi-manually delineated WMC were used for validating the segmentation produced by the neural networks. The neural network segmentation demonstrated high consistency between subjects and centers, making it a promising technique for large studies. For WMC volumes less than 10 ml, an increasing discrepancy between semi-manual and neural network segmentation was observed using the similarity index (SI) measure. The use of all three image modalities significantly improved cross-center generalizability compared to neural networks using the FLAIR image only. Expert knowledge not available to the neural networks was a minor source of discrepancy, while variation in MR scan quality constituted the largest source of error.
  •  
7.
  •  
8.
  •  
9.
  • Ikram, M. Arfan, et al. (författare)
  • Common variants at 6q22 and 17q21 are associated with intracranial volume
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 539-544
  • Tidskriftsartikel (refereegranskat)abstract
    • During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 x 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 x 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 x 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 x 10(-3) for 6q22 and 1.2 x 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size.
  •  
10.
  • Rolfs, Arndt, et al. (författare)
  • Protocol and Methodology of the Stroke in Young Fabry Patients (sifap1) Study: A Prospective Multicenter European Study of 5,024 Young Stroke Patients Aged 18-55 Years
  • 2011
  • Ingår i: Cerebrovascular Diseases. - : S. Karger AG. - 1421-9786 .- 1015-9770. ; 31:3, s. 253-262
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Stroke in the young has not been thoroughly investigated with most previous studies based on a small number of patients from single centers. Furthermore, recent reports indicate that Fabry disease may be a significant cause for young stroke. The primary aim of our study was to determine the prevalence of Fabry disease in young stroke patients, while the secondary aim was to describe patterns of stroke in young patients. Methods: We initiated the Stroke in Young Fabry Patients (sifap1) study as a multinational prospective European study of stroke patients aged 18-55 years and collected a broad range of clinical, laboratory, and radiological data using stringent standardized methods. All patients were tested for Fabry disease and blood was stored for future genetic testing. Results: We managed to enroll 5,024 eligible young stroke patients in 15 countries and 47 centers across Europe between April 2007 and January 2010. The median number of patients included per center was 98 with a range between 8 and 315. The average duration of patient recruitment per center was 22 months, ranging between 5 and 33 months. The database was closed in July 2010. This paper describes protocol and methodology of the sifap1 study. Conclusion: The sifap1 study included the largest series of young stroke patients so far and will allow for analyses on a large number of aspects of stroke in the young. Copyright (C) 2010 S. Karger AG, Basel
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (1)
Typ av innehåll
Författare/redaktör
Schmidt, Reinhold (13)
Tatlisumak, Turgut (5)
Enzinger, Christian (5)
Norrving, Bo (4)
Ikram, M. Arfan (4)
Rolfs, Arndt (4)
visa fler...
Wallin, Anders, 1950 (3)
van Duijn, Cornelia ... (3)
Barkhof, Frederik (3)
Boomsma, Dorret I. (3)
Schmidt, Helena (3)
Waldemar, Gunhild (3)
Fornage, Myriam (3)
Putaala, Jukka (2)
Grittner, Ulrike (2)
Hennerici, Michael G ... (2)
Kittner, Steven J. (2)
Meschia, James F (2)
Raitakari, Olli T (2)
Jern, Christina, 196 ... (2)
Jood, Katarina, 1966 (2)
Heinrich, Joachim (2)
Cooper, Cyrus (2)
Strachan, David P (2)
Dichgans, Martin (2)
Rosand, Jonathan (2)
McCarthy, Mark I (2)
Scheltens, Philip (2)
van der Flier, Wiesj ... (2)
Mohlke, Karen L (2)
Sharma, Pankaj (2)
Willemsen, Gonneke (2)
Jarvelin, Marjo-Riit ... (2)
Worrall, Bradford B. (2)
Wasselius, Johan (2)
Rodriguez, Alina (2)
Wilson, James F. (2)
Sorensen, Thorkild I ... (2)
Rost, Natalia S. (2)
Slowik, Agnieszka (2)
Roquer, Jaume (2)
Woo, Daniel (2)
Phuah, Chia-Ling (2)
Jimenez-Conde, Jordi (2)
Lindgren, Cecilia (2)
Stanne, Tara M, 1979 (2)
Lehtimaki, Terho (2)
Simell, Olli (2)
Hakonarson, Hakon (2)
Rivadeneira, Fernand ... (2)
visa färre...
Lärosäte
Lunds universitet (7)
Göteborgs universitet (5)
Karolinska Institutet (5)
Mittuniversitetet (2)
Umeå universitet (1)
Uppsala universitet (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy