SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rorsman Patrik) ;pers:(Bokvist K)"

Sökning: WFRF:(Rorsman Patrik) > Bokvist K

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barg, Sebastian, et al. (författare)
  • The stimulatory action of tolbutamide on Ca2+-dependent exocytosis in pancreatic beta cells is mediated by a 65-kDa mdr-like P-glycoprotein
  • 1999
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 96:10, s. 5539-5544
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracellular application of the sulfonylurea tolbutamide during whole-cell patch-clamp recordings stimulated exocytosis >5-fold when applied at a cytoplasmic Ca2+ concentration of 0.17 microM. This effect was not detectable in the complete absence of cytoplasmic Ca2+ and when exocytosis was elicited by guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). The stimulatory action could be antagonized by the sulfonamide diazoxide, by the Cl--channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), by intracellular application of the antibody JSB1 [originally raised against a 170-kDa multidrug resistance (mdr) protein], and by tamoxifen (an inhibitor of the mdr- and volume-regulated Cl- channels). Immunocytochemistry and Western blot analyses revealed that JSB1 recognizes a 65-kDa protein in the secretory granules. This protein exhibited no detectable binding of sulfonylureas and is distinct from the 140-kDa sulfonylurea high-affinity sulfonylurea receptors also present in the granules. We conclude that (i) tolbutamide stimulates Ca2+-dependent exocytosis secondary to its binding to a 140-kDa high-affinity sulfonylurea receptor in the secretory granules; and (ii) a granular 65-kDa mdr-like protein mediates the action. The processes thus initiated culminate in the activation of a granular Cl- conductance. We speculate that the activation of granular Cl- fluxes promotes exocytosis (possibly by providing the energy required for membrane fusion) by inducing water uptake and an increased intragranular hydrostatic pressure.
  •  
2.
  • Bokvist, K, et al. (författare)
  • Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells
  • 1995
  • Ingår i: EMBO Journal. - 1460-2075. ; 14:1, s. 50-57
  • Tidskriftsartikel (refereegranskat)abstract
    • We have monitored L-type Ca2+ channel activity, local cytoplasmic Ca2+ transients, the distribution of insulin-containing secretory granules and exocytosis in individual mouse pancreatic B-cells. Subsequent to the opening of the Ca2+ channels, exocytosis is initiated with a latency < 100 ms. The entry of Ca2+ that precedes exocytosis is unevenly distributed over the cell and is concentrated to the region with the highest density of secretory granules. In this region, the cytoplasmic Ca2+ concentration is 5- to 10-fold higher than in the remainder of the cell reaching concentrations of several micromolar. Single-channel recordings confirm that the L-type Ca2+ channels are clustered in the part of the cell containing the secretory granules. This arrangement, which is obviously reminiscent of the 'active zones' in nerve terminals, can be envisaged as being favourable to the B-cell as it ensures that the Ca2+ transient is maximal and restricted to the part of the cell where it is required to rapidly initiate exocytosis whilst at the same time minimizing the expenditure of metabolic energy to subsequently restore the resting Ca2+ concentration.
  •  
3.
  • Gromada, J, et al. (författare)
  • Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization
  • 1995
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 44:7, s. 767-774
  • Tidskriftsartikel (refereegranskat)abstract
    • In the insulin-secreting beta-cell line beta TC3, stimulation with 11.2 mmol/l glucose caused a rise in the intracellular free Ca2+ concentration ([Ca2+]i) in only 18% of the tested cells. The number of glucose-responsive cells increased after pretreatment of the cells with glucagon-like peptide I (GLP-I)(7-36)amide and at 10(-11) mol/l; 84% of the cells responded to glucose with a rise in [Ca2+]i. GLP-I(7-36)amide induces a rapid increase in [Ca2+]i only in cells exposed to elevated glucose concentrations (> or = 5.6 mmol/l). The action of GLP-I(7-36)amide and forskolin involved a 10-fold increase in cytoplasmic cAMP concentration and was mediated by activation of protein kinase A. It was not associated with an effect on the membrane potential but required some (small) initial entry of Ca2+ through voltage-dependent L-type Ca2+ channels, which then produced a further increase in [Ca2+]i by mobilization from intracellular stores. The latter effect reflected Ca(2+)-induced Ca2+ release and was blocked by ryanodine. Similar increases in [Ca2+]i were also observed in voltage-clamped cells, although there was neither activation of a background (Ca(2+)-permeable) inward current nor enhancement of the voltage-dependent L-type Ca2+ current. These observations are consistent with GLP-I(7-36) amide inducing glucose sensitivity by promoting mobilization of Ca2+ from intracellular stores. We propose that this novel action of GLP-I(7-36)amide represents an important factor contributing to its insulinotropic action.
  •  
4.
  • Gromada, J, et al. (författare)
  • Nateglinide, but not repaglinide, stimulates growth hormone release in rat pituitary cells by inhibition of K+ channels and stimulation of cyclic AMP-dependent exocytosis
  • 2002
  • Ingår i: European Journal of Endocrinology. - : Oxford University Press (OUP). - 1479-683X .- 0804-4643. ; 147:1, s. 133-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: GH causes insulin resistance, impairs glycemic control and increases the risk of vascular diabetic complications. Sulphonylureas stimulate GH secretion and this study was undertaken to investigate the possible stimulatory effect of repaglinide and nateglinide, two novel oral glucose regulators, on critical steps of the stimulus-secretion coupling in single rat somatotrophs. Methods: Patch-clamp techniques were used to record whole-cell ATP-sensitive K+ (K-ATP) and delayed outward K+ currents, membrane potential and Ca2+-dependent exocytosis. GH release was measured from perifused rat somatotrophs. Results: Both nateglinide and repaglinide dose-dependently suppressed K-ATP channel activity with half-maximal inhibition being observed at 413 nM and 13 nM respectively. Both compounds induced action potential firing in the somatotrophs irrespective of whether GH-releasing hormone was present or not. The stimulation of electrical activity by nateglinide, but not repaglinide, was associated with an increased mean duration of the action potentials. The latter effect correlated with a reduction of the delayed outward K+ current, which accounts for action potential repolarization. The latter effect had a K-d of 19 muM but was limited to 38% inhibition. When applied at concentrations similar to those required to block K-ATP channels, nateglinide in addition potentiated Ca2+-evoked exocytosis 3.3-fold (K-d = 3 muM) and stimulated GH release 4.5-fold. The latter effect was not shared by repaglinide. The stimulation of exocytosis by nateglinide was mimicked by cAMP and antagonized by the protein kinase A inhibitor Rp-cAMPS. Conclusion: Nateglinide stimulates GH release by inhibition of plasma membrane K+ channels, elevation of cytoplasmic cAMP levels and stimulation of Ca2+-dependent exocytosis. By contrast, the effect of repaglinide was confined to inhibition of the K-ATP channels.
  •  
5.
  • Hoy, M, et al. (författare)
  • Imidazoline NNC77-0074 stimulates insulin secretion and inhibits glucagon release by control of Ca2+-dependent exocytosis in pancreatic alpha- and beta-cells
  • 2003
  • Ingår i: European Journal of Pharmacology. - 1879-0712. ; 466:1-2, s. 213-221
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the effects of the novel imidazoline compound (+)-2-(2-(4,5-dihydro-1H-imidazol-2-yl)-thiopene-2-yl-ethyl)pyridine (NNC77-0074) on stimulus-secretion coupling in isolated pancreatic alpha- and beta-cells. NNC77-0074 stimulated glucose-dependent insulin secretion in intact mouse pancreatic islets. No effect was observed at less than or equal to 2.5 mM glucose and maximal stimulation occurred at 10-15 mM glucose. NNC77-0074 produced a concentration-dependent stimulation of insulin secretion. Half-maximal (EC50) stimulation was observed at 24 muM and at maximally stimulatory concentrations insulin release was doubled. The stimulatory action of NNC77-0074 on insulin secretion was not associated with membrane depolarisation or a change in the activity of ATP-sensitive K+ channels. Using capacitance measurements, we found that NNC77-0074 stimulated depolarisation-induced exocytosis 2.6-fold without affecting the whole-cell Ca2+ current when applied via the extracellular medium. The concentration dependence of the stimulatory action was determined by intracellular application of NNC77-0074 through the recording pipette. NNC77-0074 stimulated exocytosis half-maximal at 44 nM and at maximally stimulatory concentrations the rate of exocytosis was increased twofold. NNC77-0074 stimulated depolarised-induced insulin secretion from islets exposed to diazoxide and high external KCl (EC50 = 0.45 muM). The stimulatory action of NNC77-0074 was dependent on protein kinase C activity. NNC77-0074 potently inhibited glucagon secretion from rat islets (EC50 = I I nM). This was not associated with a change in spontaneous electrical activity and ATP-sensitive K channel activity but resulted from a reduction of the rate of Ca2+-dependent exocytosis in single rat alpha-cells (EC50=9 nM). Inhibition of exocytosis by NNC77-0074 was pertussis toxin-sensitive and mediated by activation of the protein phosphatase calcineurin. In rat somatotrophs, PC12 cells and mouse cortical neurons NNC77-0074 did not stimulate Ca2+-evoked exocytosis, whereas the other imidazoline compounds phentolamine and efaroxan produced 2.5-fold stimulation of exocytosis. Our data suggest that the imidazoline compound NNC77-0074 constitutes a novel class of antidiabetic compounds that stimulates glucose-dependent insulin release while inhibiting glucagon secretion. These actions are exclusively exerted by modulation of exocytosis of the insulin- and glucagon-containing granules. (C) 2003 Elsevier Science B.V. All rights reserved.
  •  
6.
  • Hoy, M, et al. (författare)
  • Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells
  • 2000
  • Ingår i: Journal of Physiology. - 1469-7793 .- 0022-3751. ; 527:1, s. 109-120
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Capacitance measurements were used to examine the effects of the sulphonylurea tolbutamide on Ca2+-dependent exocytosis in isolated glucagon-secreting rat pancreatic A-cells. 2. When applied extracellularly, tolbutamide stimulated depolarization-evoked exocytosis 4.2-fold without affecting the whole-cell Ca2+ current. The concentration dependence of the stimulatory action was determined by intracellular application through the recording pipette. Tolbutamide produced a concentration-dependent increase in cell capacitance. Half-maximal stimulation was observed at 33 microM and the maximum stimulation corresponded to a 3.4-fold enhancement of exocytosis. 3. The stimulatory action of tolbutamide was dependent on protein kinase C activity. The action of tolbutamide was mimicked by the general K+ channel blockers TEA (10 mM) and quinine (10 microM). A similar stimulation was elicited by 5-hydroxydecanoate (5-HD; 10 microM), an inhibitor of mitochondrial ATP-sensitive K+ (KATP) channels. 4. Tolbutamide-stimulated, but not TEA-induced, exocytosis was antagonized by the K+ channel openers diazoxide, pinacidil and cromakalim. 5. Dissipating the transgranular K+ gradient with nigericin and valinomycin inhibited tolbutamide- and Ca2+-evoked exocytosis. Furthermore, tolbutamide- and Ca2+-induced exocytosis were abolished by the H+ ionophore FCCP or by arresting the vacuolar (V-type) H+-ATPase with bafilomycin A1 or DCCD. Finally, ammonium chloride stimulated exocytosis to a similar extent to that obtained with tolbutamide. 6. We propose that during granular maturation, a granular V-type H+-ATPase pumps H+ into the secretory granule leading to the generation of a pH gradient across the granular membrane and the development of a positive voltage inside the granules. The pumping of H+ is facilitated by the concomitant exit of K+ through granular K+ channels with pharmacological properties similar to those of mitochondrial KATP channels. Release of granules that have been primed is then facilitated by the addition of K+ channel blockers. The resulting increase in membrane potential promotes exocytosis by unknown mechanisms, possibly involving granular alkalinization.
  •  
7.
  • Olsen, HL, et al. (författare)
  • Phosphatidylinositol 4-kinase serves as a metabolic sensor and regulates priming of secretory granules in pancreatic beta cells
  • 2003
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 100:9, s. 5187-5192
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin secretion is controlled by the beta cell's metabolic state, and the ability of the secretory granules to undergo exocytosis increases during glucose stimulation in a membrane potential-independent fashion. Here, we demonstrate that exocytosis of insulin-containing secretory granules depends on phosphatidylinositol 4-kinase (PI 4-kinase) activity and that inhibition of this enzyme suppresses glucose-stimulated insulin secretion. Intracellular application of phosphaticlylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [Pl(4,5)P-2] stimulated exocytosis by promoting the priming of secretory granules for release and increasing the number of granules residing in a readily releasable pool. Reducing the cytoplasmic ADP concentration in a way mimicking the effects of glucose stimulation activated PI 4-kinase and increased exocytosis whereas changes of the ATP concentration in the physiological range had little effect. The PI(4,5)P-2-binding protein Ca2+-dependent activator protein for secretion (CAPS) is present in beta cells, and neutralization of the protein abolished both Ca2+- and PI(4,5)P-2-induced exocytosis. We conclude that ADP-induced changes in PI 4-kinase activity, via generation of Pl(4,5)P-2, represents a metabolic sensor in the beta cell by virtue of its capacity to regulate the release competence of the secretory granules.
  •  
8.
  • Rorsman, Patrik, et al. (författare)
  • Ion channels, electrical activity and insulin secretion
  • 1994
  • Ingår i: Diabete & metabolisme. - 0338-1684. ; 20:2, s. 138-145
  • Tidskriftsartikel (refereegranskat)abstract
    • The insulin-secreting pancreatic beta cell is electrically excitable and changes in the membrane potential play an important role in coupling the metabolism of glucose (and other nutrient secretagogues) to the discharge of the insulin-containing granule. The application of the patch-clamp technique, which permits the recordings of the minute currents associated with the opening of individual ion channels, to pancreatic islet cells has revolutionized our understanding of the beta cell electrophysiology. Here we review some of the recent progress in the field. The properties of functionally important ion channels are described and their possible roles are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy