SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rorsman Patrik) ;pers:(Braun Matthias)"

Sökning: WFRF:(Rorsman Patrik) > Braun Matthias

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Braun, Matthias, et al. (författare)
  • Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells
  • 2007
  • Ingår i: Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 129:3, s. 221-231
  • Tidskriftsartikel (refereegranskat)abstract
    • The release gamma-aminobutyric acid (GABA) and ATP from rat beta cells was monitored using an electrophysiological assay based on overexpression GABAA or P2X2 receptor ion channels. Exocytosis of LDCVs, detected by carbon fiber amperometry of serotonin, correlated strongly (similar to 80%) with ATP release. The increase in membrane capacitance per ATP release event was 3.4 fF, close to the expected capacitance of an individual LDCV with a diameter of 0.3 mu m. ATP and GABA were coreleased with serotonin with the same probability. Immunogold electron microscopy revealed that similar to 15% of the LDCVs contain GABA. Prespike "pedestals," reflecting exit of granule constituents via the fusion pore, were less frequently observed for ATP than for serotonin or GABA and the relative amplitude (amplitude of foot compared to spike) was smaller: in some cases the ATP-dependent pedestal was missing entirely. An inward tonic current, not dependent on glucose and inhibited by the GABAA receptor antagonist SR95531, was observed in beta cells in clusters of islet cells. Noise analysis indicated that it was due to the activity of individual channels with a conductance of 30 pS, the same as expected for individual GABA(A) Cl- channels with the ionic gradients used. We conclude that (a) LDCVs accumulate ATP and serotonin; (b) regulated release of GABA can be accounted for by exocytosis of a subset of insulin-containing LDCVs; (c) the fusion pore of LDCVs exhibits selectivity and compounds are differentially released depending on their chemical properties (including size); and (d) a glucose-independent nonvesicular form of GABA release exists in beta cells.
  •  
2.
  • Braun, Matthias, et al. (författare)
  • GABAB-receptor activation inhibits exocytosis in rat pancreatic {beta}-cells by G-protein-dependent activation of calcineurin.
  • 2004
  • Ingår i: Journal of Physiology. - : Wiley. - 1469-7793 .- 0022-3751. ; 559:2, s. 397-409
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the regulation of hormone secretion from rat pancreatic islets by the GABAB receptors (GABABRs). Inclusion of the specific GABABR antagonist CGP 55845 in the extracellular medium increased glucose-stimulated insulin secretion 1.6-fold but did not affect the release of glucagon and somatostatin. Conversely, addition of the GABABR agonist baclofen inhibited glucose-stimulated insulin secretion by ∼60%. Using RT-PCR, transcription of GABABR1a-c,f and GABABR2 subunits was detected in β-cells. Measurements of membrane currents and cell capacitance were applied to single β-cells to investigate the mechanisms by which GABABR activation inhibits insulin secretion. In perforated-patch measurements, baclofen inhibited exocytosis elicited by 500-ms voltage-clamp depolarizations to 0 mV by ≤ 80% and voltage-gated Ca2+ entry by only ∼30%. Both effects were concentration-dependent with IC50 values of ∼2 μm. The inhibitory action of baclofen was abolished in the presence of CGP 55845. The ability of baclofen to suppress exocytosis was prevented by pre-treatment with pertussis toxin and by inclusion of GDPβS in the intracellular medium, and became irreversible in the presence of GTPγS as expected for a process involving inhibitory G-proteins (Gi/o-proteins). The inhibitory effect of baclofen resulted from activation of the serine/threonine protein phosphatase calcineurin and pre-treatment with cyclosporin A or intracellular application of calcineurin autoinhibitory peptide abolished the effect. Addition of baclofen had no effect on [Ca2+]i and electrical activity in glucose-stimulated β-cells. These data indicate that GABA released from β-cells functions as an autocrine inhibitor of insulin secretion in pancreatic islets and that the effect is principally due to direct suppression of exocytosis.
  •  
3.
  • Braun, Matthias, et al. (författare)
  • Regulated Exocytosis of GABA-containing Synaptic-like Microvesicles in Pancreatic {beta}-cells.
  • 2004
  • Ingår i: Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 123:3, s. 191-204
  • Tidskriftsartikel (refereegranskat)abstract
    • We have explored whether {gamma}-aminobutyric acid (GABA) is released by regulated exocytosis of GABA-containing synaptic-like microvesicles (SLMVs) in insulin-releasing rat pancreatic ß-cells. To this end, ß-cells were engineered to express GABAA-receptor Cl--channels at high density using adenoviral infection. Electron microscopy indicated that the average diameter of the SLMVs is 90 nm, that every ß-cell contains ~3,500 such vesicles, and that insulin-containing large dense core vesicles exclude GABA. Quantal release of GABA, seen as rapidly activating and deactivating Cl--currents, was observed during membrane depolarizations from -70 mV to voltages beyond -40 mV or when Ca2+ was dialysed into the cell interior. Depolarization-evoked GABA release was suppressed when Ca2+ entry was inhibited using Cd2+. Analysis of the kinetics of GABA release revealed that GABA-containing vesicles can be divided into a readily releasable pool and a reserve pool. Simultaneous measurements of GABA release and cell capacitance indicated that exocytosis of SLMVs contributes ~1% of the capacitance signal. Mathematical analysis of the release events suggests that every SLMV contains 0.36 amol of GABA. We conclude that there are two parallel pathways of exocytosis in pancreatic ß-cells and that release of GABA may accordingly be temporally and spatially separated from insulin secretion. This provides a basis for paracrine GABAergic signaling within the islet.
  •  
4.
  • De Marinis, Yang, et al. (författare)
  • GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis.
  • 2010
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 11:6, s. 543-553
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 muM) concentrations of forskolin, respectively. The expression of GLP-1 receptors in alpha cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on alpha cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates alpha cell electrical activity, increases [Ca(2+)](i), enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP](i)). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP](i).
  •  
5.
  • Eliasson, Lena, et al. (författare)
  • Novel aspects of the molecular mechanisms controlling insulin secretion
  • 2008
  • Ingår i: Journal of Physiology. - : Wiley. - 1469-7793 .- 0022-3751. ; 586:14, s. 3313-3324
  • Forskningsöversikt (refereegranskat)abstract
    • Pancreatic beta-cells secrete insulin by Ca2+-dependent exocytosis of secretory granules. beta-cell exocytosis involves SNARE (soluble NSF-attachment protein receptor) proteins similar to those controlling neurotransmitter release and depends on the close association of L-type Ca2+ channels and granules. In most cases, the secretory granules fuse individually but there is ultrastructural and biophysical evidence of multivesicular exocytosis. Estimates of the secretory rate in beta-cells in intact islets indicate a release rate of similar to 15 granules per beta-cell per second, 100-fold higher than that observed in biochemical assays. Single-vesicle capacitance measurements reveal that the diameter of the fusion pore connecting the granule lumen with the exterior is similar to 1.4 nm. This is considerably smaller than the size of insulin and membrane fusion is therefore not obligatorily associated with release of the cargo, a feature that may contribute to the different rates of secretion detected by the biochemical and biophysical measurements. However, small molecules like ATP and GABA, which are stored together with insulin in the granules, are small enough to be released via the narrow fusion pore, which accordingly functions as a molecular sieve. We finally consider the possibility that defective fusion pore expansion accounts for the decrease in insulin secretion observed in pathophysiological states including long-term exposure to lipids.
  •  
6.
  • Rorsman, Patrik, et al. (författare)
  • K-ATP-channels and glucagon secretion glucose-regulated
  • 2008
  • Ingår i: Trends in Endocrinology and Metabolism. - : Elsevier BV. - 1879-3061 .- 1043-2760. ; 19:8, s. 277-284
  • Forskningsöversikt (refereegranskat)abstract
    • Glucagon, secreted by the a-cells of the pancreatic islets, is the most important glucose-increasing hormone of the body. The precise regulation of glucagon release remains incompletely defined but has been proposed to involve release of inhibitory factors from neighbouring P-cells (paracrine control). However, the observation that glucose can regulate glucagon secretion under conditions when insulin secretion does not occur argues that the a-cell is also equipped with its own intrinsic (exerted within the a-cell itself) glucose sensing. Here we consider the possible mechanisms involved with a focus on ATP-regulated K+-channels and changes in a-cell membrane potential.
  •  
7.
  • Rosengren, Anders, et al. (författare)
  • Reduced Insulin Exocytosis in Human Pancreatic β-cells With Gene Variants Linked to Type 2 Diabetes.
  • 2012
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 61:7, s. 1726-1733
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features in relation to genetic risk profiles in diabetic and nondiabetic donors. Islets from donors with T2D exhibited impaired insulin secretion, which was more pronounced in lean than obese diabetic donors. We assessed the impact of 14 disease susceptibility variants on measures of glucose sensing, exocytosis, and structure. Variants near TCF7L2 and ADRA2A were associated with reduced glucose-induced insulin secretion, whereas susceptibility variants near ADRA2A, KCNJ11, KCNQ1, and TCF7L2 were associated with reduced depolarization-evoked insulin exocytosis. KCNQ1, ADRA2A, KCNJ11, HHEX/IDE, and SLC2A2 variants affected granule docking. We combined our results to create a novel genetic risk score for β-cell dysfunction that includes aberrant granule docking, decreased Ca(2+) sensitivity of exocytosis, and reduced insulin release. Individuals with a high risk score displayed an impaired response to intravenous glucose and deteriorating insulin secretion over time. Our results underscore the importance of defects in β-cell exocytosis in T2D and demonstrate the potential of cellular phenotypic characterization in the elucidation of complex genetic disorders.
  •  
8.
  • Wendt, Anna, et al. (författare)
  • Glucose Inhibition of Glucagon Secretion From Rat alpha-Cells Is Mediated by GABA Released From Neighboring beta-Cells.
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 53:4, s. 1038-1045
  • Tidskriftsartikel (refereegranskat)abstract
    • γ-Aminobutyric acid (GABA) has been proposed to function as a paracrine signaling molecule in islets of Langerhans. We have shown that rat β-cells release GABA by Ca2+-dependent exocytosis of synaptic-like microvesicles. Here we demonstrate that GABA thus released can diffuse over sufficient distances within the islet interstitium to activate GABAA receptors in neighboring cells. Confocal immunocytochemistry revealed the presence of GABAA receptors in glucagon-secreting α-cells but not in β- and δ-cells. RT-PCR analysis detected transcripts of α1 and α4 as well as β1–3 GABAA receptor subunits in purified α-cells but not in β-cells. In whole-cell voltage-clamp recordings, exogenous application of GABA activated Cl− currents in α-cells. The GABAA receptor antagonist SR95531 was used to investigate the effects of endogenous GABA (released from β-cells) on pancreatic islet hormone secretion. The antagonist increased glucagon secretion at 1 mmol/l glucose twofold and completely abolished the inhibitory action of 20 mmol/l glucose on glucagon release. Basal and glucose-stimulated secretion of insulin and somatostatin were unaffected by SR95531. The L-type Ca2+ channel blocker isradipine evoked a paradoxical stimulation of glucagon secretion. This effect was not observed in the presence of SR95531, and we therefore conclude that isradipine stimulates glucagon secretion by inhibition of GABA release.
  •  
9.
  • Zhang, Quan, et al. (författare)
  • R-type Ca2+-channel-evoked CICR regulates glucose-induced somatostatin secretion
  • 2007
  • Ingår i: Nature Cell Biology. - : Springer Science and Business Media LLC. - 1465-7392 .- 1476-4679. ; 9:4, s. 171-453
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic islets have a central role in blood glucose homeostasis. In addition to insulin-producing beta-cells and glucagon-secreting alpha-cells, the islets contain somatostatin-releasing delta-cells(1). Somatostatin is a powerful inhibitor of insulin and glucagon secretion(2). It is normally secreted in response to glucose(3) and there is evidence suggesting its release becomes perturbed in diabetes(4). Little is known about the control of somatostatin release. Closure of ATP-regulated K+-channels (K-ATP-channels)(5) and a depolarization-evoked increase in cytoplasmic free Ca2+ concentration ([Ca2+](i))(6-8) have been proposed to be essential. Here, we report that somatostatin release evoked by high glucose (>= 10 mM) is unaffected by the K-ATP-channel activator diazoxide and proceeds normally in K-ATP-channel-deficient islets. Glucose-induced somatostatin secretion is instead primarily dependent on Ca2+-induced Ca2+-release (CICR). This constitutes a novel mechanism for K-ATP-channel-independent metabolic control of pancreatic hormone secretion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy