SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rorsman Patrik) ;pers:(Mulder Hindrik)"

Sökning: WFRF:(Rorsman Patrik) > Mulder Hindrik

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adam, Julie, et al. (författare)
  • Fumarate Hydratase Deletion in Pancreatic β Cells Leads to Progressive Diabetes
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 20:13, s. 3135-3148
  • Tidskriftsartikel (refereegranskat)abstract
    • We explored the role of the Krebs cycle enzyme fumarate hydratase (FH) in glucose-stimulated insulin secretion (GSIS). Mice lacking Fh1 in pancreatic β cells (Fh1βKO mice) appear normal for 6–8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1α or Nrf2. Progressive hyperglycemia in Fh1βKO mice led to dysregulated metabolism in β cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+]i elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D). The impaired GSIS in islets from diabetic Fh1βKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D. Adam et al. have shown that progressive diabetes develops if fumarate hydratase is deleted in mouse pancreatic β cells. Such β cells exhibit elevated fumarate and protein succination and show progressively reduced ATP production and insulin secretion. The depleted insulin response to glucose recovers when diabetic islets are cultured in reduced glucose.
  •  
2.
  • Braun, Matthias, et al. (författare)
  • Regulated Exocytosis of GABA-containing Synaptic-like Microvesicles in Pancreatic {beta}-cells.
  • 2004
  • Ingår i: Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 123:3, s. 191-204
  • Tidskriftsartikel (refereegranskat)abstract
    • We have explored whether {gamma}-aminobutyric acid (GABA) is released by regulated exocytosis of GABA-containing synaptic-like microvesicles (SLMVs) in insulin-releasing rat pancreatic ß-cells. To this end, ß-cells were engineered to express GABAA-receptor Cl--channels at high density using adenoviral infection. Electron microscopy indicated that the average diameter of the SLMVs is 90 nm, that every ß-cell contains ~3,500 such vesicles, and that insulin-containing large dense core vesicles exclude GABA. Quantal release of GABA, seen as rapidly activating and deactivating Cl--currents, was observed during membrane depolarizations from -70 mV to voltages beyond -40 mV or when Ca2+ was dialysed into the cell interior. Depolarization-evoked GABA release was suppressed when Ca2+ entry was inhibited using Cd2+. Analysis of the kinetics of GABA release revealed that GABA-containing vesicles can be divided into a readily releasable pool and a reserve pool. Simultaneous measurements of GABA release and cell capacitance indicated that exocytosis of SLMVs contributes ~1% of the capacitance signal. Mathematical analysis of the release events suggests that every SLMV contains 0.36 amol of GABA. We conclude that there are two parallel pathways of exocytosis in pancreatic ß-cells and that release of GABA may accordingly be temporally and spatially separated from insulin secretion. This provides a basis for paracrine GABAergic signaling within the islet.
  •  
3.
  •  
4.
  • Knudsen, J. G., et al. (författare)
  • Dysregulation of Glucagon Secretion by Hyperglycemia-Induced Sodium-Dependent Reduction of ATP Production
  • 2019
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 29:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes is a bihormonal disorder resulting from combined insulin and glucagon secretion defects. Mice lacking fumarase (Fh1) in their beta cells (Fh1 beta KO mice) develop progressive hyperglycemia and dysregulated glucagon secretion similar to that seen in diabetic patients (too much at high glucose and too little at low glucose). The glucagon secretion defects are corrected by low concentrations of tolbutamide and prevented by the sodium-glucose transport (SGLT) inhibitor phlorizin. These data link hyperglycemia, intracellular Na+ accumulation, and acidification to impaired mitochondrial metabolism, reduced ATP production, and dysregulated glucagon secretion. Protein succination, reflecting reduced activity of fumarase, is observed in alpha cells from hyperglycemic Fh1 beta KO and beta-V59M gain-of-function K-ATP channel mice, diabetic Goto-Kakizaki rats, and patients with type 2 diabetes. Succination is also observed in renal tubular cells and cardiomyocytes from hyperglycemic Fh1 beta KO mice, suggesting that the model can be extended to other SGLT-expressing cells and may explain part of the spectrum of diabetic complications.
  •  
5.
  • Mulder, Hindrik, et al. (författare)
  • Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active in beta-cells
  • 1999
  • Ingår i: Diabetes. - 1939-327X. ; 48:1, s. 228-232
  • Tidskriftsartikel (refereegranskat)abstract
    • Triglycerides in the beta-cell may be important for stimulus-secretion coupling, through provision of a lipid-derived signal, and for pathogenetic events in NIDDM, where lipids may adversely affect beta-cell function. In adipose tissues, hormone-sensitive lipase (HSL) is rate-limiting in triglyceride hydrolysis. Here, we investigated whether this enzyme is also expressed and active in beta-cells. Northern blot analysis and reverse transcription-polymerase chain reaction demonstrated that HSL is expressed in rat islets and in the clonal beta-cell lines INS-1, RINm5F, and HIT-T15. Western blot analysis identified HSL in mouse and rat islets and the clonal beta-cells. In mouse and rat, immunocytochemistry showed a predominant occurrence of HSL in beta-cells, with a presumed cytoplasmic localization. Lipase activity in homogenates of the rodent islets and clonal beta-cells constituted 2.1 +/- 0.6% of that in adipocytes; this activity was immunoinhibited by use of antibodies to HSL. The established HSL expression and activity in beta-cells offer a mechanism whereby lipids are mobilized from intracellular stores. Because HSL in adipocytes is activated by cAMP-dependent protein kinase (PKA), PKA-regulated triglyceride hydrolysis in beta-cells may participate in the regulation of insulin secretion, possibly by providing a lipid-derived signal, e.g., long-chain acyl-CoA and diacylglycerol.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy