SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosand Jonathan) ;pers:(Langefeld Carl D.)"

Sökning: WFRF:(Rosand Jonathan) > Langefeld Carl D.

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chung, Jaeyoon, et al. (författare)
  • Genome-wide association study of cerebral small vessel disease reveals established and novel loci
  • 2019
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 142:10, s. 3176-3189
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracerebral haemorrhage and small vessel ischaemic stroke (SVS) are the most acute manifestations of cerebral small vessel disease, with no established preventive approaches beyond hypertension management. Combined genome-wide association study (GWAS) of these two correlated diseases may improve statistical power to detect novel genetic factors for cerebral small vessel disease, elucidating underlying disease mechanisms that may form the basis for future treatments. Because intracerebral haemorrhage location is an adequate surrogate for distinct histopathological variants of cerebral small vessel disease (lobar for cerebral amyloid angiopathy and non-lobar for arteriolosclerosis), we performed GWAS of intracerebral haemorrhage by location in 1813 subjects (755 lobar and 1005 non-lobar) and 1711 stroke-free control subjects. Intracerebral haemorrhage GWAS results by location were meta-analysed with GWAS results for SVS from MEGASTROKE, using 'Multi-Trait Analysis of GWAS' (MTAG) to integrate summary data across traits and generate combined effect estimates. After combining intracerebral haemorrhage and SVS datasets, our sample size included 241 024 participants (6255 intracerebral haemorrhage or SVS cases and 233 058 control subjects). Genome-wide significant associations were observed for non-lobar intracerebral haemorrhage enhanced by SVS with rs2758605 [MTAG P-value (P) = 2.6 × 10-8] at 1q22; rs72932727 (P = 1.7 × 10-8) at 2q33; and rs9515201 (P = 5.3 × 10-10) at 13q34. In the GTEx gene expression library, rs2758605 (1q22), rs72932727 (2q33) and rs9515201 (13q34) are significant cis-eQTLs for PMF1 (P = 1 × 10-4 in tibial nerve), NBEAL1, FAM117B and CARF (P < 2.1 × 10-7 in arteries) and COL4A2 and COL4A1 (P < 0.01 in brain putamen), respectively. Leveraging S-PrediXcan for gene-based association testing with the predicted expression models in tissues related with nerve, artery, and non-lobar brain, we found that experiment-wide significant (P < 8.5 × 10-7) associations at three genes at 2q33 including NBEAL1, FAM117B and WDR12 and genome-wide significant associations at two genes including ICA1L at 2q33 and ZCCHC14 at 16q24. Brain cell-type specific expression profiling libraries reveal that SEMA4A, SLC25A44 and PMF1 at 1q22 and COL4A1 and COL4A2 at 13q34 were mainly expressed in endothelial cells, while the genes at 2q33 (FAM117B, CARF and NBEAL1) were expressed in various cell types including astrocytes, oligodendrocytes and neurons. Our cross-phenotype genetic study of intracerebral haemorrhage and SVS demonstrates novel genome-wide associations for non-lobar intracerebral haemorrhage at 2q33 and 13q34. Our replication of the 1q22 locus previous seen in traditional GWAS of intracerebral haemorrhage, as well as the rediscovery of 13q34, which had previously been reported in candidate gene studies with other cerebral small vessel disease-related traits strengthens the credibility of applying this novel genome-wide approach across intracerebral haemorrhage and SVS.
  •  
2.
  • Falcone, Guido J., et al. (författare)
  • Burden of Risk Alleles for Hypertension Increases Risk of Intracerebral Hemorrhage
  • 2012
  • Ingår i: Stroke: a journal of cerebral circulation. - 1524-4628. ; 43:11, s. 2877-2883
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-Genetic variation influences risk of intracerebral hemorrhage (ICH). Hypertension (HTN) is a potent risk factor for ICH and several common genetic variants (single nucleotide polymorphisms [SNPs]) associated with blood pressure levels have been identified. We sought to determine whether the cumulative burden of blood pressure-related SNPs is associated with risk of ICH and pre-ICH diagnosis of HTN. Methods-We conducted a prospective multicenter case-control study in 2272 subjects of European ancestry (1025 cases and 1247 control subjects). Thirty-nine SNPs reported to be associated with blood pressure levels were identified from the National Human Genome Research Institute genomewide association study catalog. Single-SNP association analyses were performed for the outcomes ICH and pre-ICH HTN. Subsequently, weighted and unweighted genetic risk scores were constructed using these SNPs and entered as the independent variable in logistic regression models with ICH and pre-ICH HTN as the dependent variables. Results-No single SNP was associated with either ICH or pre-ICH HTN. The blood pressure-based unweighted genetic risk score was associated with risk of ICH (OR, 1.11; 95% CI, 1.02-1.21; P=0.01) and the subset of ICH in deep regions (OR, 1.18; 95% CI, 1.07-1.30; P=0.001), but not with the subset of lobar ICH. The score was associated with a history of HTN among control subjects (OR, 1.17; 95% CI, 1.04-1.31; P=0.009) and ICH cases (OR, 1.15; 95% CI, 1.01-1.31; P=0.04). Similar results were obtained when using a weighted score. Conclusion-Increasing numbers of high blood pressure-related alleles are associated with increased risk of deep ICH as well as with clinically identified HTN. (Stroke. 2012; 43: 2877-2883.)
  •  
3.
  • Falcone, Guido J., et al. (författare)
  • Genetically Elevated LDL Associates with Lower Risk of Intracerebral Hemorrhage
  • 2020
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 88:1, s. 56-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Observational studies point to an inverse correlation between low-density lipoprotein (LDL) cholesterol levels and risk of intracerebral hemorrhage (ICH), but it remains unclear whether this association is causal. We tested the hypothesis that genetically elevated LDL is associated with reduced risk of ICH. Methods: We constructed one polygenic risk score (PRS) per lipid trait (total cholesterol, LDL, high-density lipoprotein [HDL], and triglycerides) using independent genomewide significant single nucleotide polymorphisms (SNPs) for each trait. We used data from 316,428 individuals enrolled in the UK Biobank to estimate the effect of each PRS on its corresponding trait, and data from 1,286 ICH cases and 1,261 matched controls to estimate the effect of each PRS on ICH risk. We used these estimates to conduct Mendelian Randomization (MR) analyses. Results: We identified 410, 339, 393, and 317 lipid-related SNPs for total cholesterol, LDL, HDL, and triglycerides, respectively. All four PRSs were strongly associated with their corresponding trait (all p < 1.00 × 10-100). While one SD increase in the PRSs for total cholesterol (odds ratio [OR] = 0.92; 95% confidence interval [CI] = 0.85–0.99; p = 0.03) and LDL cholesterol (OR = 0.88; 95% CI = 0.81–0.95; p = 0.002) were inversely associated with ICH risk, no significant associations were found for HDL and triglycerides (both p > 0.05). MR analyses indicated that 1mmol/L (38.67mg/dL) increase of genetically instrumented total and LDL cholesterol were associated with 23% (OR = 0.77; 95% CI = 0.65–0.98; p = 0.03) and 41% lower risks of ICH (OR = 0.59; 95% CI = 0.42–0.82; p = 0.002), respectively. Interpretation: Genetically elevated LDL levels were associated with lower risk of ICH, providing support for a potential causal role of LDL cholesterol in ICH. ANN NEUROL 2020.
  •  
4.
  • Haycock, Philip C., et al. (författare)
  • Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases A Mendelian Randomization Study
  • 2017
  • Ingår i: JAMA Oncology. - : American Medical Association. - 2374-2437 .- 2374-2445. ; 3:5, s. 636-651
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. OBJECTIVE: To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. DATA SOURCES: Genomewide association studies (GWAS) published up to January 15, 2015. STUDY SELECTION: GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. DATA EXTRACTION AND SYNTHESIS: Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. MAIN OUTCOMES AND MEASURES: Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. RESULTS: Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [ 95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [ 95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [ 95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [ 95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [ 95% CI, 0.05-0.15]). CONCLUSIONS AND RELEVANCE: It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
  •  
5.
  • Phuah, Chia-Ling, et al. (författare)
  • Genetic variants influencing elevated myeloperoxidase levels increase risk of stroke
  • 2017
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 140:10, s. 2663-2672
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary intracerebral haemorrhage and lacunar ischaemic stroke are acute manifestations of progressive cerebral microvascular disease. Current paradigms suggest atherosclerosis is a chronic, dynamic, inflammatory condition precipitated in response to endothelial injury from various environmental challenges. Myeloperoxidase plays a central role in initiation and progression of vascular inflammation, but prior studies linking myeloperoxidase with stroke risk have been inconclusive. We hypothesized that genetic determinants of myeloperoxidase levels influence the development of vascular instability, leading to increased primary intracerebral haemorrhage and lacunar stroke risk. We used a discovery cohort of 1409 primary intracerebral haemorrhage cases and 1624 controls from three studies, an extension cohort of 12 577 ischaemic stroke cases and 25 643 controls from NINDSSiGN, and a validation cohort of 10 307 ischaemic stroke cases and 29 326 controls from METASTROKE Consortium with genome-wide genotyping to test this hypothesis. A genetic risk score reflecting elevated myeloperoxidase levels was constructed from 15 common single nucleotide polymorphisms identified from prior genome-wide studies of circulating myeloperoxidase levels (P55 - 10 6). This genetic risk score was used as the independent variable in multivariable regression models for association with primary intracerebral haemorrhage and ischaemic stroke subtypes. We used fixed effects meta-analyses to pool estimates across studies. We also used Cox regression models in a prospective cohort of 174 primary intracerebral haemorrhage survivors for association with intracerebral haemorrhage recurrence. We present effects of myeloperoxidase elevating single nucleotide polymorphisms on stroke risk per risk allele, corresponding to a one allele increase in the myeloperoxidase increasing genetic risk score. Genetic determinants of elevated circulating myeloperoxidase levels were associated with both primary intracerebral haemorrhage risk (odds ratio, 1.07, P = 0.04) and recurrent intracerebral haemorrhage risk (hazards ratio, 1.45, P = 0.006). In analysis of ischaemic stroke subtypes, the myeloperoxidase increasing genetic risk score was strongly associated with lacunar subtype only (odds ratio, 1.05, P = 0.0012). These results, demonstrating that common genetic variants that increase myeloperoxidase levels increase risk of primary intracerebral haemorrhage and lacunar stroke, directly implicate the myeloperoxidase pathway in the pathogenesis of cerebral small vessel disease. Because genetic variants are not influenced by environmental exposures, these results provide new support for a causal rather than bystander role for myeloperoxidase in the progression of cerebrovascular disease. Furthermore, these results support a rationale for chronic inflammation as a potential modifiable stroke risk mechanism, and suggest that immune-targeted therapies could be useful for treatment and prevention of cerebrovascular disease.
  •  
6.
  • Rannikmaee, Kristiina, et al. (författare)
  • Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease
  • 2015
  • Ingår i: Neurology. - 1526-632X. ; 84:9, s. 918-926
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives:We hypothesized that common variants in the collagen genes COL4A1/COL4A2 are associated with sporadic forms of cerebral small vessel disease.Methods:We conducted meta-analyses of existing genotype data among individuals of European ancestry to determine associations of 1,070 common single nucleotide polymorphisms (SNPs) in the COL4A1/COL4A2 genomic region with the following: intracerebral hemorrhage and its subtypes (deep, lobar) (1,545 cases, 1,485 controls); ischemic stroke and its subtypes (cardioembolic, large vessel disease, lacunar) (12,389 cases, 62,004 controls); and white matter hyperintensities (2,733 individuals with ischemic stroke and 9,361 from population-based cohorts with brain MRI data). We calculated a statistical significance threshold that accounted for multiple testing and linkage disequilibrium between SNPs (p < 0.000084).Results:Three intronic SNPs in COL4A2 were significantly associated with deep intracerebral hemorrhage (lead SNP odds ratio [OR] 1.29, 95% confidence interval [CI] 1.14-1.46, p = 0.00003; r(2) > 0.9 between SNPs). Although SNPs associated with deep intracerebral hemorrhage did not reach our significance threshold for association with lacunar ischemic stroke (lead SNP OR 1.10, 95% CI 1.03-1.18, p = 0.0073), and with white matter hyperintensity volume in symptomatic ischemic stroke patients (lead SNP OR 1.07, 95% CI 1.01-1.13, p = 0.016), the direction of association was the same. There was no convincing evidence of association with white matter hyperintensities in population-based studies or with non-small vessel disease cerebrovascular phenotypes.Conclusions:Our results indicate an association between common variation in the COL4A2 gene and symptomatic small vessel disease, particularly deep intracerebral hemorrhage. These findings merit replication studies, including in ethnic groups of non-European ancestry.
  •  
7.
  • Woo, Daniel, et al. (författare)
  • Meta-Analysis of Genome-Wide Association Studies Identifies 1q22 as a Susceptibility Locus for Intracerebral Hemorrhage.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:4, s. 511-521
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracerebral hemorrhage (ICH) is the stroke subtype with the worst prognosis and has no established acute treatment. ICH is classified as lobar or nonlobar based on the location of ruptured blood vessels within the brain. These different locations also signal different underlying vascular pathologies. Heritability estimates indicate a substantial genetic contribution to risk of ICH in both locations. We report a genome-wide association study of this condition that meta-analyzed data from six studies that enrolled individuals of European ancestry. Case subjects were ascertained by neurologists blinded to genotype data and classified as lobar or nonlobar based on brain computed tomography. ICH-free control subjects were sampled from ambulatory clinics or random digit dialing. Replication of signals identified in the discovery cohort with p < 1 × 10(-6) was pursued in an independent multiethnic sample utilizing both direct and genome-wide genotyping. The discovery phase included a case cohort of 1,545 individuals (664 lobar and 881 nonlobar cases) and a control cohort of 1,481 individuals and identified two susceptibility loci: for lobar ICH, chromosomal region 12q21.1 (rs11179580, odds ratio [OR] = 1.56, p = 7.0 × 10(-8)); and for nonlobar ICH, chromosomal region 1q22 (rs2984613, OR = 1.44, p = 1.6 × 10(-8)). The replication included a case cohort of 1,681 individuals (484 lobar and 1,194 nonlobar cases) and a control cohort of 2,261 individuals and corroborated the association for 1q22 (p = 6.5 × 10(-4); meta-analysis p = 2.2 × 10(-10)) but not for 12q21.1 (p = 0.55; meta-analysis p = 2.6 × 10(-5)). These results demonstrate biological heterogeneity across ICH subtypes and highlight the importance of ascertaining ICH cases accordingly.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy