SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosenqvist M) ;hsvcat:1"

Sökning: WFRF:(Rosenqvist M) > Naturvetenskap

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Welling, D. T., et al. (författare)
  • Recommendations for Next-Generation Ground Magnetic Perturbation Validation
  • 2018
  • Ingår i: Space Weather. - 1542-7390. ; 16:12, s. 1912-1920
  • Tidskriftsartikel (refereegranskat)abstract
    • Data-model validation of ground magnetic perturbation forecasts, specifically of the time rate of change of surface magnetic field, dB/dt, is a critical task for model development and for mitigation of geomagnetically induced current effects. While a current, community-accepted standard for dB/dt validation exists (Pulkkinen et al., 2013), it has several limitations that prevent more complete understanding of model capability. This work presents recommendations from the International Forum for Space Weather Capabilities Assessment Ground Magnetic Perturbation Working Team for creating a next-generation validation suite. Four recommendations are made to address the existing suite: greatly expand the number of ground observatories used, expand the number of events included in the suite from six to eight, generate metrics as a function of magnetic local time, and generate metrics as a function of activity type. For each of these, implementation details are explored. Limitations and future considerations are also discussed.
  •  
2.
  • Dimmock, Andrew P., et al. (författare)
  • Modeling the Geomagnetic Response to the September 2017 Space Weather Event Over Fennoscandia Using the Space Weather Modeling Framework : Studying the Impacts of Spatial Resolution
  • 2021
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 19:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We must be able to predict and mitigate against geomagnetically induced current (GIC) effects to minimize socio-economic impacts. This study employs the space weather modeling framework (SWMF) to model the geomagnetic response over Fennoscandia to the September 7-8, 2017 event. Of key importance to this study is the effects of spatial resolution in terms of regional forecasts and improved GIC modeling results. Therefore, we ran the model at comparatively low, medium, and high spatial resolutions. The virtual magnetometers from each model run are compared with observations from the IMAGE magnetometer network across various latitudes and over regional-scales. The virtual magnetometer data from the SWMF are coupled with a local ground conductivity model which is used to calculate the geoelectric field and estimate GICs in a Finnish natural gas pipeline. This investigation has lead to several important results in which higher resolution yielded: (1) more realistic amplitudes and timings of GICs, (2) higher amplitude geomagnetic disturbances across latitudes, and (3) increased regional variations in terms of differences between stations. Despite this, substorms remain a significant challenge to surface magnetic field prediction from global magnetohydrodynamic modeling. For example, in the presence of multiple large substorms, the associated large-amplitude depressions were not captured, which caused the largest model-data deviations. The results from this work are of key importance to both modelers and space weather operators. Particularly when the goal is to obtain improved regional forecasts of geomagnetic disturbances and/or more realistic estimates of the geoelectric field.
  •  
3.
  • Garnier, P., et al. (författare)
  • Titan's ionosphere in the magnetosheath : Cassini RPWS results during the T32 flyby
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:11, s. 4257-4272
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cassini mission has provided much information about the Titan environment, with numerous low altitude encounters with the moon being always inside the magnetosphere. The only encounter taking place outside the magnetopause, in the magnetosheath, occurred the 13 June 2007 (T32 flyby). This paper is dedicated to the analysis of the Radio and Plasma Wave investigation data during this specific encounter, in particular with the Langmuir probe, providing a detailed picture of the cold plasma environment and of Titan's ionosphere with these unique plasma conditions. The various pressure terms were also calculated during the flyby. The comparison with the T30 flyby, whose geometry was very similar to the T32 encounter but where Titan was immersed in the kronian magnetosphere, reveals that the evolution of the incident plasma has a significant influence on the structure of the ionosphere, with in particular a change of the exo-ionospheric shape. The electrical conductivities are given along the trajectory of the spacecraft and the discovery of a polar plasma cavity is reported.
  •  
4.
  • Ah-King, M., et al. (författare)
  • Why is there no sperm competition in a pipefish with externally brooding males? Insights from sperm activation and morphology
  • 2006
  • Ingår i: Journal of Fish Biology. - : Wiley. - 0022-1112 .- 1095-8649. ; 68:3, s. 958-962
  • Tidskriftsartikel (refereegranskat)abstract
    • Nerophis ophidion sperm activation and morphology were investigated with the aim of explaining the apparent lack of sperm competition in this syngnathid with externally brooding males. Nerophis ophidion sperm were activated by a mixture of ovarian fluid and sea water, but not by sea water alone. This indicated that sperm were not shed into the water but needed to be released near the eggs, which probably restrained sperm competition. (c) 2006 The Fisheries Society of the British Isles.
  •  
5.
  • Ågren, Karin, et al. (författare)
  • Detection of currents and associated electric fields in Titan's ionosphere from Cassini data
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116:4, s. A04313-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations from three Cassini flybys of Titan using data from the radio and plasma wave science, magnetometer and plasma spectrometer instruments. We combine magnetic field and cold plasma measurements with calculated conductivities and conclude that there are currents of the order of 10 to 100 nA m (2) flowing in the ionosphere of Titan. The currents below the exobase (similar to 1400 km) are principally field parallel and Hall in nature, while the Pedersen current is negligible in comparison. Associated with the currents are perpendicular electric fields ranging from 0.5 to 3 mu V m (1).
  •  
6.
  • Billing, Anna M., et al. (författare)
  • No terminal investment in pipefish males : Only young males exhibit risk-prone courtship behavior
  • 2007
  • Ingår i: Behavioral Ecology. - : Oxford University Press (OUP). - 1045-2249 .- 1465-7279. ; 18:3, s. 535-540
  • Tidskriftsartikel (refereegranskat)abstract
    • Animals are expected to trade-off current and future reproduction in order to maximize lifetime reproductive success. Old individuals may accept higher risks during courtship and mate choice as their residual reproductive value (RRV) diminishes (the terminal investment hypothesis). Alternatively, young individuals may be forced to take higher risks during courtship to compensate for their lower competitiveness and/or attractiveness (the compensation hypothesis). In this study, we used the sex-role reversed pipefish Syngnathus typhle to test how mate choice and courtship behavior of males with different RRV were affected by an increase in predation risk. Males of different ages were given the opportunity to court and choose between 2 partners. In half of the trials, a predator was present in a separate aquarium. We found no support for the terminal investment hypothesis: no difference in response to the increased predation risk by males of different ages was evident. In agreement with the compensation hypothesis, young males invested more in courtship behavior compared with older males. In addition, in the absence of a predator, we found that a high female activity was important for male mate choice decisions. During increased predation risk, this relationship was, however, reversed and males preferred less active, and thus less conspicuous, partners. This suggests that both female activity and size are important factors for male mating decisions in this species and that these decisions mainly are affected by predation risk and advantages in mate acquisition.
  •  
7.
  • Opgenoorth, Hermann J., et al. (författare)
  • Day-side ionospheric conductivities at Mars
  • 2010
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 58:10, s. 1139-1151
  • Tidskriftsartikel (refereegranskat)abstract
    • We present estimates of the day-side ionospheric conductivities at Mars based on magnetic field measurements by Mars Global Surveyor (MGS) at altitudes down to similar to 100 km during aerobraking orbits early in the mission. At Mars, the so-called ionospheric dynamo region, where plasma/neutral collisions permit electric currents perpendicular to the magnetic field, lies between 100 and 250 km altitude. We find that the ionosphere is highly conductive in this region, as expected, with peak Pedersen and Hall conductivities of 0.1-1.5 S/m depending on the solar illumination and induced magnetospheric conditions. Furthermore, we find a consistent double peak pattern in the altitude profile of the day-side Pedersen conductivity, similar to that on Titan found by Rosenqvist et al. (2009). A high altitude peak, located between 180 and 200 km, is equivalent to the terrestrial peak in the lower F-layer. A second and typically much stronger layer of Pedersen conductivity is observed between 120 and 130 km, which is below the Hall conductivity peak at about 130-140 km. In this altitude region, MGS finds a sharp decrease in induced magnetic field strength at the inner magnetospheric boundary, while the day-side electron density is known to remain high as far down as 100 km. We find that such Titan-like behaviour of the Pedersen conductivity is only observed under regions of strongly draped magnetospheric field-lines, and negligible crustal magnetic anomalies below the spacecraft. Above regions of strong crustal magnetic anomalies, the Pedersen conductivity profile becomes more Earth-like with one strong Pedersen peak above the Hall conductivity peak. Here, both conductivities are 1-2 orders of magnitude smaller than the above only weakly magnetised crustal regions, depending on the strength of the crustal anomaly field at ionospheric altitudes. This nature of the Pedersen conductivity together with the structured distribution of crustal anomalies all over the planet should give rise to strong conductivity gradients around such anomalies. Day-side ionospheric conductivities on Mars (in regions away from the crustal magnetic anomalies) and Titan seem to behave in a very similar manner when horizontally draped magnetic field-lines partially magnetise a sunlit ionosphere. Therefore, it appears that a similar double peak structure of strong Pedersen conductivity could be a more general feature of non-magnetised bodies with ionised upper atmospheres, and thus should be expected to occur also at other non-magnetised terrestrial planets like Venus or other planetary bodies within the host planet magnetospheres.
  •  
8.
  • Stenberg, Gabriella, et al. (författare)
  • Internal structure and spatial dimensions of whistler wave regions in the magnetopause boundary layer
  • 2007
  • Ingår i: Annales Geophysicae. - : European Geosciences Union (EGU). - 0992-7689 .- 1432-0576. ; 25:11, s. 2439-2451
  • Tidskriftsartikel (refereegranskat)abstract
    • We use whistler waves observed close to the magnetopause as an instrument to investigate the internal structure of the magnetopause-magnetosheath boundary layer. We find that this region is characterized by tube-like structures with dimensions less than or comparable with an ion inertial length in the direction perpendicular to the ambient magnetic field. The tubes are revealed as they constitute regions where whistler waves are generated and propagate. We believe that the region containing tube-like structures extend several Earth radii along the magnetopause in the boundary layer. Within the presumed wave generating regions we find current structures moving at the whistler wave group velocity in the same direction as the waves.
  •  
9.
  • Rosenqvist, L., et al. (författare)
  • 3D Modeling of Geomagnetically Induced Currents in Sweden-Validation and Extreme Event Analysis
  • 2022
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Rosenqvist and Hall (2019), developed a proof-of-concept modeling capability that incorporates a detailed 3D structure of Earth's electrical conductivity in a geomagnetically induced current estimation procedure (GIC-SMAP). The model was verified based on GIC measurements in northern Sweden. The study showed that southern Sweden is exposed to stronger electric fields due to a combined effect of low crustal conductivity and the influence of the surrounding coast. This study aims at further verifying the model in this region. GIC measurements on a power line at the west coast of southern Sweden are utilized. The location of the transmission line was selected to include coast effects at the ocean-land interface to investigate the importance of using 3D induction modeling methods. The model is used to quantify the hazard of severe GICs in this particular transmission line by using historic recordings of strong geomagnetic disturbances. To quantify a worst-case scenario GICs are calculated from modeled magnetic disturbances by the Space Weather Modeling Framework based on estimates for an idealized extreme interplanetary coronal mass ejection. The observed and estimated GIC based on the 3D GIC-SMAP procedure in the transmission line in southern Sweden are in good agreement. In contrast, 1D methods underestimate GICs by about 50%. The estimated GICs in the studied transmission line exceed 100 A for one of 14 historical geomagnetic storm intervals. The peak GIC during the sudden impulse phase of a "perfect" storm exceeds 300 A but depends on the locality of the station as the interplanetary magnetic cloud hits Earth.
  •  
10.
  • Rosenqvist, L., et al. (författare)
  • 3D Modeling of Geomagnetically Induced Currents in Sweden—Validation and Extreme Event Analysis
  • 2022
  • Ingår i: Space Weather. - : John Wiley & Sons. - 1542-7390. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Rosenqvist and Hall (2019), https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW002084 developed a proof-of-concept modeling capability that incorporates a detailed 3D structure of Earth's electrical conductivity in a geomagnetically induced current estimation procedure (GIC-SMAP). The model was verified based on GIC measurements in northern Sweden. The study showed that southern Sweden is exposed to stronger electric fields due to a combined effect of low crustal conductivity and the influence of the surrounding coast. This study aims at further verifying the model in this region. GIC measurements on a power line at the west coast of southern Sweden are utilized. The location of the transmission line was selected to include coast effects at the ocean-land interface to investigate the importance of using 3D induction modeling methods. The model is used to quantify the hazard of severe GICs in this particular transmission line by using historic recordings of strong geomagnetic disturbances. To quantify a worst-case scenario GICs are calculated from modeled magnetic disturbances by the Space Weather Modeling Framework based on estimates for an idealized extreme interplanetary coronal mass ejection. The observed and estimated GIC based on the 3D GIC-SMAP procedure in the transmission line in southern Sweden are in good agreement. In contrast, 1D methods underestimate GICs by about 50%. The estimated GICs in the studied transmission line exceed 100 A for one of 14 historical geomagnetic storm intervals. The peak GIC during the sudden impulse phase of a “perfect” storm exceeds 300 A but depends on the locality of the station as the interplanetary magnetic cloud hits Earth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy