SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosik Daniel) "

Sökning: WFRF:(Rosik Daniel)

  • Resultat 1-10 av 22
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tolmachev, Vladimir, et al. (författare)
  • Tumor Targeting Using Affibody Molecules : Interplay of Affinity, Target Expression Level, and Binding Site Composition
  • 2012
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 53:6, s. 953-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide imaging of cancer-associated molecular alterations may contribute to patient stratification for targeting therapy. Scaffold high-affinity proteins, such as Affibody molecules, are a new, promising class of probes for in vivo imaging. Methods. The effects of human epidermal growth factor receptor 2 (HER2) affinity and binding site composition of HER2-binding Affibody molecules, and of the HER2 density on the tumor targeting, were studied in vivo. The tumor uptake and tumor-to-organ ratios of Affibody molecules with moderate (dissociation constant [K-D)] 10(-9) M) or high (K-D = 10(-10) M) affinity were compared between tumor xenografts with a high (SKOV-3) and low (LS174T) HER2 expression level in BALB/C nu/nu mice. Two Affibody molecules with similar affinity (K-D = 10(-10) M) but having alternative amino acids in the binding site were compared. Results. In SKOV-3 xenografts, uptake was independent of affinity at 4 h after injection, but high-affinity binders provided 2-fold-higher tumor radioactivity retention at 24 h. In LS174T xenografts, uptake of high-affinity probes was already severalfold higher at 4 h after injection, and the difference was increased at 24 h. The clearance rate and tumor-to-organ ratios were influenced by the amino acid composition of the binding surface of the tracer protein. Conclusion. The optimal affinity of HER2-binding Affibody molecules depends on the expression of a molecular target. At a high expression level (>10(6) receptors per cell), an affinity in the low-nanomolar range is sufficient. At moderate expression, subnanomolar affinity is desirable. The binding site composition can influence the imaging contrast. This information may be useful for development of imaging agents based on scaffold affinity proteins.
  •  
2.
  • Tran, Thuy A., et al. (författare)
  • Design, synthesis and biological evaluation of a multifunctional HER2-specific Affibody molecule for molecular imaging
  • 2009
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - 1619-7070 .- 1619-7089. ; 36:11, s. 1864-1873
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to design and evaluate a novel platform for labelling of Affibody molecules, enabling both recombinant and synthetic production and site-specific labelling with Tc-99m or trivalent radiometals. The HER2-specific Affibody molecule PEP05352 was made by peptide synthesis. The chelator sequence SECG (serine-glutamic acid-cysteine-glycine) was anchored on the C-terminal to allow Tc-99m labelling. The cysteine can alternatively serve as a conjugation site of the chelator DOTA for indium labelling. The resulting Tc-99m- and In-111-labelled Affibody molecules were evaluated both in vitro and in vivo. Both conjugates retained their capacity to bind to HER2 receptors in vitro and in vivo. The tumour to blood ratio in LS174T xenografts was 30 at 4 h post-injection for both conjugates. Biodistribution data showed that the Tc-99m-labelled Affibody molecule had a fourfold lower kidney accumulation compared with the In-111-labelled Affibody molecule while the accumulation in other organs was similar. Gamma camera imaging of the conjugates could clearly visualise the tumours 4 h after injection. Incorporation of the C-terminal SECG sequence in Affibody molecules provides a general multifunctional platform for site-specific labelling with different nuclides (technetium, indium, gallium, cobalt or yttrium) and for a flexible production (chemical synthesis or recombinant).
  •  
3.
  • Ahlgren, Sara, et al. (författare)
  • Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant affibody molecules
  • 2008
  • Ingår i: Bioconjugate chemistry. - 1043-1802 .- 1520-4812. ; 19:1, s. 235-243
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are a new class of small (7 kDa) scaffold affinity proteins, which demonstrate promising properties as agents for in vivo radionuclide targeting. The Affibody scaffold is cysteine-free and therefore independent of disulfide bonds. Thus, a single thiol group can be engineered into the protein by introduction of one cysteine. Coupling of thiol-reactive bifunctional chelators can enable site-specific labeling of recombinantly produced Affibody molecules. In this study, the use of 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-10-maleimidoethylacetamide (MMA-DOTA) for 111 In-labeling of anti-HER2 Affibody molecules His 6-Z HER2:342-Cys and Z HER2:2395-Cys has been evaluated. The introduction of a cysteine residue did not affect the affinity of the proteins, which was 29 pM for His 6-Z HER2:342-Cys and 27 pM for Z HER2:2395-Cys, comparable with 22 pM for the parental Z HER2:342. MMA-DOTA was conjugated to DTT-reduced Affibody molecules with a coupling efficiency of 93% using a 1:1 molar ratio of chelator to protein. The conjugates were labeled with 111 In to a specific radioactivity of up to 7 GBq/mmol, with preserved binding for the target HER2. In vivo, the non-His-tagged variant 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys demonstrated appreciably lower liver uptake than its His-tag-containing counterpart. In mice bearing HER2-expressing LS174T xenografts, 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys showed specific and rapid tumor localization, and rapid clearance from blood and nonspecific compartments, leading to a tumor-to-blood-ratio of 18 +/- 8 already 1 h p.i. Four hours p.i., the tumor-to-blood ratio was 138 +/- 8. Xenografts were clearly visualized already 1 h p.i.
  •  
4.
  •  
5.
  • Altai, Mohamed, et al. (författare)
  • Influence of Nuclides and Chelators on Imaging Using Affibody Molecules : Comparative Evaluation of Recombinant Affibody Molecules Site-Specifically Labeled with Ga-68 and In-111 via Maleimido Derivatives of DOTA and NODAGA
  • 2013
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 24:6, s. 1102-1109
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate detection of cancer-associated molecular abnormalities in tumors could make cancer treatment more of personalized. Affibody molecules enable high contrast imaging of tumor-associated protein expression shortly after injection. The use should increase sensitivity of HER2 imaging. The chemical nature of the generator-produced positron-emitting radionuclide Ga-68 of radionuclides and chelators influences the biodistribution of Affibody molecules, providing an opportunity to further increase the imaging contrast. The aim of the study was to compare maleimido derivatives of DOTA and NODAGA for site-specific labeling of a recombinant Z(HER2:2395) HER2-binding Affibody molecule with Ga-68. DOTA and NODAGA were site-specifically conjugated to the Z(HER2:2395) Affibody molecule having a C-terminal cysteine and labeled with Ga-68 and In-111. All labeled conjugates retained specificity to HER2 in vitro. Most of the cell-associated activity was membrane-bound with a minor difference in internalization rate. All variants demonstrated specific targeting of xenografts and a high tumor uptake. The xenografts were dearly visualized using all conjugates. The influence of chelator on the biodistribution and targeting properties was much less pronounced for Ga-68 than for In-111. The tumor uptake of Ga-68-NODAGA-Z(HER2:2395) and Ga-68-NODAGA-Z(HER2:2395) and tumor-to-blood ratios at 2 h p.i. did not differ significantly. However, the tumor-to-liver ratio was significantly higher for Ga-68-NODAGA- Z(HER2:2395) (8 +/- 2 vs 5.0 +/- 0.3) offering the advantage of better liver metastases visualization. In conclusion, influence of chelators on biodistribution of Affibody molecules depends on the radionuclides and reoptimization of labeling chemistry is required when a radionuclide label is changed.
  •  
6.
  • Feldwisch, Joachim, et al. (författare)
  • Design of an optimized scaffold for affibody molecules.
  • 2010
  • Ingår i: Journal of Molecular Biology. - 0022-2836 .- 1089-8638. ; 398:2, s. 232-247
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are non-immunoglobulin-derived affinity proteins based on a three-helical bundle protein domain. Here, we describe the design process of an optimized Affibody molecule scaffold with improved properties and a surface distinctly different from that of the parental scaffold. The improvement was achieved by applying an iterative process of amino acid substitutions in the context of the human epidermal growth factor receptor 2 (HER2)-specific Affibody molecule Z(HER2:342). Replacements in the N-terminal region, loop 1, helix 2 and helix 3 were guided by extensive structural modeling using the available structures of the parent Z domain and Affibody molecules. The effect of several single substitutions was analyzed followed by combination of up to 11 different substitutions. The two amino acid substitutions N23T and S33K accounted for the most dramatic improvements, including increased thermal stability with elevated melting temperatures of up to +12 degrees C. The optimized scaffold contains 11 amino acid substitutions in the nonbinding surface and is characterized by improved thermal and chemical stability, as well as increased hydrophilicity, and enables generation of identical Affibody molecules both by chemical peptide synthesis and by recombinant bacterial expression. A HER2-specific Affibody tracer, [MMA-DOTA-Cys61]-Z(HER2:2891)-Cys (ABY-025), was produced by conjugating MMA-DOTA (maleimide-monoamide-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to the peptide produced either chemically or in Escherichia coli. ABY-025 showed high affinity and specificity for HER2 (equilibrium dissociation constant, K(D), of 76 pM) and detected HER2 in tissue sections of SKOV-3 xenograft and human breast tumors. The HER2-binding capacity was fully retained after three cycles of heating to 90 degrees C followed by cooling to room temperature. Furthermore, the binding surfaces of five Affibody molecules targeting other proteins (tumor necrosis factor alpha, insulin, Taq polymerase, epidermal growth factor receptor or platelet-derived growth factor receptor beta) were grafted onto the optimized scaffold, resulting in molecules with improved thermal stability and a more hydrophilic nonbinding surface.
  •  
7.
  • Heskamp, Sandra, et al. (författare)
  • Imaging of Human Epidermal Growth Factor Receptor Type 2 Expression with (18)F-Labeled Affibody Molecule Z(HER2:2395) in a Mouse Model for Ovarian Cancer
  • 2012
  • Ingår i: Journal of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 53:1, s. 146-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are small (7 kDa) proteins with subnanomolar targeting affinity. Previous SPECT studies in xenografts have shown that the Affibody molecule (111)In-DOTA-Z(HER2:2395) can discriminate between high and low human epidermal growth factor receptor type 2 (HER2)-expressing tumors, indicating that radiolabeled Affibody molecules have potential for patient selection for HER2-targeted therapy. Compared with SPECT, PET with positron-emitting radionuclides, such as (18)F, may improve imaging of HER2 expression because of higher sensitivity and improved quantification of PET. The aim of the present study was to determine whether the (18)F-labeled NOTA-conjugated Affibody molecule Z(HER2:2395) is a suitable agent for imaging of HER2 expression. The tumor-targeting properties of (18)F-labeled Z(HER2:2395) were compared with (111)In- and (68)Ga-labeled Z(HER2:2395) in mice with HER2-expressing SK-OV-3 xenografts. Methods: Z(HER2:2395) was conjugated with NOTA and radiolabeled with (18)F, (68)Ga, and (111)In. Radiolabeling with (18)F was based on the complexation of Al(18)F by NOTA. The 50% inhibitory concentration values for NOTA-Z(HER2:2395) labeled with (19)F, (69)Ga, and (115)In were determined in a competitive cell-binding assay using SK-OV-3 cells. Mice bearing subcutaneous SK-OV-3 xenografts were injected intravenously with radiolabeled NOTA-Z(HER2:2395). One and 4 h after injection, PET/CT or SPECT/CT images were acquired, and the biodistribution was determined by ex vivo measurement. Results: The 50% inhibitory concentration values for (19)F-, (69)Ga-, and (115)In-NOTA-Z(HER2:2395) were 5.0, 6.3, and 5.3 nM, respectively. One hour after injection, tumor uptake was 4.4 +/- 0.8 percentage injected dose per gram (% ID/g), 5.6 +/- 1.6 % ID/g, and 7.1 +/- 1.4 % ID/g for (18)F-, (68)Ga-, and (111)In-NOTA-Z(HER2:2395), respectively, and the respective tumor-to-blood ratios were 7.4 +/- 1.8, 8.0 +/- 1.3, and 4.8 +/- 1.3. Tumor uptake was specific, because uptake could be blocked efficiently by coinjection of an excess of unlabeled Z(HER2:2395). PET/CT and SPECT/CT images clearly visualized HER2-expressing SK-OV-3 xenografts. Conclusion: This study showed that (18)F-NOTA-Z(HER2:2395) is a promising new imaging agent for HER2 expression in tumors. Affibody molecules were successfully labeled with (18)F within 30 min, based on the complexation of Al(18)F by NOTA. Further research is needed to determine whether this technique can be used for patient selection for HER2-targeted therapy.
  •  
8.
  • Heskamp, Sandra, et al. (författare)
  • Imaging of Human Epidermal Growth Factor Receptor Type 2 Expression with 18F-Labeled Affibody Molecule ZHER2:2395 in a Mouse Model for Ovarian Cancer
  • 2012
  • Ingår i: Journal of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 53:1, s. 146-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are small (7 kDa) proteins with subnanomolar targeting affinity. Previous SPECT studies in xenografts have shown that the Affibody molecule 111In-DOTA-ZHER2:2395 can discriminate between high and low human epidermal growth factor receptor type 2 (HER2)–expressing tumors, indicating that radiolabeled Affibody molecules have potential for patient selection for HER2-targeted therapy. Compared with SPECT, PET with positron-emitting radionuclides, such as 18F, may improve imaging of HER2 expression because of higher sensitivity and improved quantification of PET. The aim of the present study was to determine whether the 18F-labeled NOTA-conjugated Affibody molecule ZHER2:2395 is a suitable agent for imaging of HER2 expression. The tumor-targeting properties of 18F-labeled ZHER2:2395 were compared with 111In- and 68Ga-labeled ZHER2:2395 in mice with HER2-expressing SK-OV-3 xenografts. Methods: ZHER2:2395 was conjugated with NOTA and radiolabeled with 18F, 68Ga, and 111In. Radiolabeling with 18F was based on the complexation of Al18F by NOTA. The 50% inhibitory concentration values for NOTA-ZHER2:2395 labeled with 19F, 69Ga, and 115In were determined in a competitive cell-binding assay using SK-OV-3 cells. Mice bearing subcutaneous SK-OV-3 xenografts were injected intravenously with radiolabeled NOTA-ZHER2:2395. One and 4 h after injection, PET/CT or SPECT/CT images were acquired, and the biodistribution was determined by ex vivo measurement. Results: The 50% inhibitory concentration values for 19F-, 69Ga-, and 115In-NOTA-ZHER2:2395 were 5.0, 6.3, and 5.3 nM, respectively. One hour after injection, tumor uptake was 4.4 ± 0.8 percentage injected dose per gram (%ID/g), 5.6 ± 1.6 %ID/g, and 7.1 ± 1.4 %ID/g for 18F-, 68Ga-, and 111In-NOTA-ZHER2:2395, respectively, and the respective tumor-to-blood ratios were 7.4 ± 1.8, 8.0 ± 1.3, and 4.8 ± 1.3. Tumor uptake was specific, because uptake could be blocked efficiently by coinjection of an excess of unlabeled ZHER2:2395. PET/CT and SPECT/CT images clearly visualized HER2-expressing SK-OV-3 xenografts. Conclusion: This study showed that 18F-NOTA-ZHER2:2395 is a promising new imaging agent for HER2 expression in tumors. Affibody molecules were successfully labeled with 18F within 30 min, based on the complexation of Al18F by NOTA. Further research is needed to determine whether this technique can be used for patient selection for HER2-targeted therapy.
  •  
9.
  • Honarvar, Hadis, et al. (författare)
  • Evaluation of backbone-cyclized HER2-binding 2-helix Affibody molecule for In Vivo molecular imaging
  • 2013
  • Ingår i: Nuclear Medicine and Biology. - 0969-8051 .- 1872-9614. ; 40:3, s. 378-386
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionAffibody molecules, small scaffold proteins, have demonstrated an appreciable potential as imaging probes. Affibody molecules are composed of three alpha-helices. Helices 1 and 2 are involved in molecular recognition, while helix 3 provides stability. The size of Affibody molecules can be reduced by omitting the third alpha-helix and cross-linking the two remaining, providing a smaller molecule with better extravasation and quicker clearance of unbound tracer. The goal of this study was to develop a novel 2-helix Affibody molecule based on backbone cyclization by native chemical ligation (NCL).MethodsThe HER2-targeting NCL-cyclized Affibody molecule ZHER2:342min has been designed, synthesized and site-specifically conjugated with a DOTA chelator. DOTA-ZHER2:342min was labeled with 111In and 68 Ga. The binding affinity of DOTA-ZHER2:342min was evaluated in vitro. The targeting properties of 111In- and 68 Ga-DOTA-ZHER2:342min were evaluated in mice bearing SKOV-3 xenografts and compared with the properties of 111In- and 68 Ga-labeled PEP09239, a DOTA-conjugated 2-helix Affibody analogue cyclized by a homocysteine disulfide bridge.ResultsThe dissociation constant (KD) for DOTA-ZHER2:342min binding to HER2 was 18 nM according to SPR measurements. DOTA-ZHER2:342min was labeled with 111In and 68 Ga. Both conjugates demonstrated bi-phasic binding kinetics to HER2-expressing cells, with KD1 in low nanomolar range. Both variants demonstrated specific uptake in HER2-expressing xenografts. Tumor-to-blood ratios at 2 h p.i. were 6.1 ± 1.3 for 111In- DOTA-ZHER2:342min and 4.6 ± 0.7 for 68 Ga-DOTA-ZHER2:342min. However, the uptake of DOTA-ZHER2:342min in lung, liver and spleen was appreciably higher than the uptake of PEP09239-based counterparts.ConclusionsNative chemical ligation enables production of a backbone-cyclized HER2-binding 2-helix Affibody molecule (ZHER2:342min) with low nanomolar target affinity and specific tumor uptake.
  •  
10.
  • Kotowski, Krzysztof, et al. (författare)
  • Role of PFKFB3 and PFKFB4 in Cancer: Genetic Basis, Impact on Disease Development/Progression, and Potential as Therapeutic Targets
  • 2021
  • Ingår i: Cancers. - : MDPI. - 2072-6694. ; 13:4
  • Forskningsöversikt (refereegranskat)abstract
    • Glycolysis is a crucial metabolic process in rapidly proliferating cells such as cancer cells. Phosphofructokinase-1 (PFK-1) is a key rate-limiting enzyme of glycolysis. Its efficiency is allosterically regulated by numerous substances occurring in the cytoplasm. However, the most potent regulator of PFK-1 is fructose-2,6-bisphosphate (F-2,6-BP), the level of which is strongly associated with 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase activity (PFK-2/FBPase-2, PFKFB). PFK-2/FBPase-2 is a bifunctional enzyme responsible for F-2,6-BP synthesis and degradation. Four isozymes of PFKFB (PFKFB1, PFKFB2, PFKFB3, and PFKFB4) have been identified. Alterations in the levels of all PFK-2/FBPase-2 isozymes have been reported in different diseases. However, most recent studies have focused on an increased expression of PFKFB3 and PFKFB4 in cancer tissues and their role in carcinogenesis. In this review, we summarize our current knowledge on all PFKFB genes and protein structures, and emphasize important differences between the isoenzymes, which likely affect their kinase/phosphatase activities. The main focus is on the latest reports in this field of cancer research, and in particular the impact of PFKFB3 and PFKFB4 on tumor progression, metastasis, angiogenesis, and autophagy. We also present the most recent achievements in the development of new drugs targeting these isozymes. Finally, we discuss potential combination therapies using PFKFB3 inhibitors, which may represent important future cancer treatment options.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22
  • [1]23Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy