SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roslin Tomas) "

Sökning: WFRF:(Roslin Tomas)

  • Resultat 1-10 av 133
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cardoso Pereira, Cássio, et al. (författare)
  • Subtle structures with not-so-subtle functions : A data set of arthropod constructs and their host plants
  • 2022
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 103:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.
  •  
2.
  • Laubmeier, A. N., et al. (författare)
  • From theory to experimental design : Quantifying a trait-based theory of predator-prey dynamics
  • 2018
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Successfully applying theoretical models to natural communities and predicting ecosystem behavior under changing conditions is the backbone of predictive ecology. However, the experiments required to test these models are dictated by practical constraints, and models are often opportunistically validated against data for which they were never intended. Alternatively, we can inform and improve experimental design by an in-depth pre-experimental analysis of the model, generating experiments better targeted at testing the validity of a theory. Here, we describe this process for a specific experiment. Starting from food web ecological theory, we formulate a model and design an experiment to optimally test the validity of the theory, supplementing traditional design considerations with model analysis. The experiment itself will be run and described in a separate paper. The theory we test is that trophic population dynamics are dictated by species traits, and we study this in a community of terrestrial arthropods. We depart from the Allometric Trophic Network (ATN) model and hypothesize that including habitat use, in addition to body mass, is necessary to better model trophic interactions. We therefore formulate new terms which account for micro-habitat use as well as intra-and interspecific interference in the ATN model. We design an experiment and an effective sampling regime to test this model and the underlying assumptions about the traits dominating trophic interactions. We arrive at a detailed sampling protocol to maximize information content in the empirical data obtained from the experiment and, relying on theoretical analysis of the proposed model, explore potential shortcomings of our design. Consequently, since this is a "pre-experimental" exercise aimed at improving the links between hypothesis formulation, model construction, experimental design and data collection, we hasten to publish our findings before analyzing data from the actual experiment, thus setting the stage for strong inference.
  •  
3.
  • Romero, Gustavo Q., et al. (författare)
  • Climate variability and aridity modulate the role of leaf shelters for arthropods : A global experiment
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:11, s. 3694-3710
  • Tidskriftsartikel (refereegranskat)abstract
    • Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.
  •  
4.
  • Wootton, Kate, et al. (författare)
  • Beyond body size-new traits for new heights in trait-based modelling of predator-prey dynamics
  • 2022
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 17:7 July
  • Tidskriftsartikel (refereegranskat)abstract
    • Food webs map feeding interactions among species, providing a valuable tool for understanding and predicting community dynamics. Using species' body sizes is a promising avenue for parameterizing food-web models, but such approaches have not yet been able to fully recover observed community dynamics. Such discrepancies suggest that traits other than body size also play important roles. For example, differences in species' use of microhabitat or non-consumptive effects of intraguild predators may affect dynamics in ways not captured by body size. In Laubmeier et al. (2018), we developed a dynamic food-web model incorporating microhabitat and non-consumptive predator effects in addition to body size, and used simulations to suggest an optimal sampling design of a mesocosm experiment to test the model. Here, we perform the mesocosm experiment to generate empirical timeseries of insect herbivore and predator abundance dynamics. We minimize least squares error between the model and time-series to determine parameter values of four alternative models, which differ in terms of including vs excluding microhabitat use and non-consumptive predator-predator effects. We use both statistical and expert-knowledge criteria to compare the models and find including both microhabitat use and non-consumptive predatorpredator effects best explains observed aphid and predator population dynamics, followed by the model including microhabitat alone. This ranking suggests that microhabitat plays a larger role in driving population dynamics than non-consumptive predator-predator effects, although both are clearly important. Our results illustrate the importance of additional traits alongside body size in driving trophic interactions. They also point to the need to consider trophic interactions and population dynamics in a wider community context, where non-trophic impacts can dramatically modify the interplay between multiple predators and prey. Overall, we demonstrate the potential for utilizing traits beyond body size to improve traitbased models and the value of iterative cycling between theory, data and experiment to hone current insights into how traits affect food-web dynamics. © 2022 Wootton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
5.
  • Wootton, Kate L., et al. (författare)
  • Food webs coupled in space : Consumer foraging movement affects both stocks and fluxes
  • 2023
  • Ingår i: Ecology. - : John Wiley & Sons. - 0012-9658 .- 1939-9170. ; 104:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The exchange of material and individuals between neighboring food webs is ubiquitous and affects ecosystem functioning. Here, we explore animal foraging movement between adjacent, heterogeneous habitats and its effect on a suite of interconnected ecosystem functions. Combining dynamic food web models with nutrient-recycling models, we study foraging across habitats that differ in fertility and plant diversity. We found that net foraging movement flowed from high to low fertility or high to low diversity and boosted stocks and flows across the whole loop of ecosystem functions, including biomass, detritus, and nutrients, in the recipient habitat. Contrary to common assumptions, however, the largest flows were often between the highest and intermediate fertility habitats rather than highest and lowest. The effect of consumer influx on ecosystem functions was similar to the effect of increasing fertility. Unlike fertility, however, consumer influx caused a shift toward highly predator-dominated biomass distributions, especially in habitats that were unable to support predators in the absence of consumer foraging. This shift resulted from both direct and indirect effects propagated through the interconnected ecosystem functions. Only by considering both stocks and fluxes across the whole loop of ecosystem functions do we uncover the mechanisms driving our results. In conclusion, the outcome of animal foraging movements will differ from that of dispersal and diffusion. Together we show how considering active types of animal movement and the interconnectedness of ecosystem functions can aid our understanding of the patchy landscapes of the Anthropocene.
  •  
6.
  • Wootton, Kate, et al. (författare)
  • Towards a modular theory of trophic interactions
  • 2023
  • Ingår i: Functional Ecology. - : John Wiley & Sons. - 0269-8463 .- 1365-2435. ; 37:1, s. 26-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Species traits and environmental conditions determine the occurrence and strength of trophic interactions. If we understand the relationship between these factors and trophic interactions, we can make more accurate predictions and build better trophic-interaction models. We can compare traits and conditions by considering their effect on different parts (steps) of a trophic interaction, such as the steps search and pursuit. By linking traits to relevant steps, we can use these relationships to build trophic-interaction models. Currently, this is done ad hoc, defining steps based on the species and traits of interest. This makes it difficult to compare across traits and species and gain an overarching understanding of how traits and the environment drive trophic interactions. We present a comprehensive approach for the explicit choice of interaction steps and species traits or environmental conditions, which is readily integrated into existing models. The core of this framework is that it is modular; we present eight steps that occur in all trophic interactions and use them to build a modular, general dynamic model. When applying the framework, one explicitly selects only the most relevant steps and uses those to build a specific model. To build our modular framework, we revisit and expand the functional and numerical response functions, dividing the trophic interaction into eight steps: (1) search, (2) prey detection, (3) attack decision, (4) pursuit, (5) subjugation, (6) ingestion, (7) digestion and (8) nutrient allocation. Together these steps form a general dynamical model where trophic interactions can be explicitly parameterized for multiple traits and environmental factors. We then concretize this approach by outlining how a specific community can be modelled by selecting key modules (steps) and parameterizing them for relevant factors. This we exemplify for a community of terrestrial arthropods using empirical data on body size and temperature responses. With species interactions at the core of community dynamics, our modular approach allows for quantification and comparisons of the importance of different steps, traits, and abiotic factors across ecosystems and trophic-interaction types, and provides a powerful tool for trait-based prediction of food-web structure and dynamics. A free Plain Language Summary can be found within the Supporting Information of this article. 
  •  
7.
  • Abrego, Nerea, et al. (författare)
  • Accounting for environmental variation in co-occurrence modelling reveals the importance of positive interactions in root-associated fungal communities
  • 2020
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 29:14, s. 2736-2746
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the role of interspecific interactions in shaping ecological communities is one of the central goals in community ecology. In fungal communities, measuring interspecific interactions directly is challenging because these communities are composed of large numbers of species, many of which are unculturable. An indirect way of assessing the role of interspecific interactions in determining community structure is to identify the species co-occurrences that are not constrained by environmental conditions. In this study, we investigated co-occurrences among root-associated fungi, asking whether fungi co-occur more or less strongly than expected based on the environmental conditions and the host plant species examined. We generated molecular data on root-associated fungi of five plant species evenly sampled along an elevational gradient at a high arctic site. We analysed the data using a joint species distribution modelling approach that allowed us to identify those co-occurrences that could be explained by the environmental conditions and the host plant species, as well as those co-occurrences that remained unexplained and thus more probably reflect interactive associations. Our results indicate that not only negative but also positive interactions play an important role in shaping microbial communities in arctic plant roots. In particular, we found that mycorrhizal fungi are especially prone to positively co-occur with other fungal species. Our results bring new understanding to the structure of arctic interaction networks by suggesting that interactions among root-associated fungi are predominantly positive.
  •  
8.
  • Abrego, Nerea, et al. (författare)
  • Higher host plant specialization of root-associated endophytes than mycorrhizal fungi along an arctic elevational gradient
  • 2020
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 10:16, s. 8989-9002
  • Tidskriftsartikel (refereegranskat)abstract
    • How community-level specialization differs among groups of organisms, and changes along environmental gradients, is fundamental to understanding the mechanisms influencing ecological communities. In this paper, we investigate the specialization of root-associated fungi for plant species, asking whether the level of specialization varies with elevation. For this, we applied DNA barcoding based on the ITS region to root samples of five plant species equivalently sampled along an elevational gradient at a high arctic site. To assess whether the level of specialization changed with elevation and whether the observed patterns varied between mycorrhizal and endophytic fungi, we applied a joint species distribution modeling approach. Our results show that host plant specialization is not environmentally constrained in arctic root-associated fungal communities, since there was no evidence for changing specialization with elevation, even if the composition of root-associated fungal communities changed substantially. However, the level of specialization for particular plant species differed among fungal groups, root-associated endophytic fungal communities being highly specialized on particular host species, and mycorrhizal fungi showing almost no signs of specialization. Our results suggest that plant identity affects associated mycorrhizal and endophytic fungi differently, highlighting the need of considering both endophytic and mycorrhizal fungi when studying specialization in root-associated fungal communities.
  •  
9.
  •  
10.
  • Aguilera Nuñez, Guillermo, et al. (författare)
  • Organic fertilisation enhances generalist predators and suppresses aphid growth in the absence of specialist predators
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58, s. 1455-1465
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological control by natural enemies is a valuable ecosystem service. The predator community in a crop field is a combination of predators dwelling in the field and those moving into it from the surrounding landscape. The former is mainly affected by field management, the latter more by the composition of the surrounding landscape. Yet, separate and combined effects of local and landscape management on pest suppression have seldom been investigated.We set-up mesocosms within an existing long-term agricultural field experiment to investigate the effects of local management of organic manure or inorganic mineral fertilisation, and simulated the spillover from the surrounding landscape of different predator types: no predators, generalist predators (wolf spiders) and specialist predators (ladybirds). We examined whether aphid density was driven by top-down or bottom-up processes under different fertilisation treatments, and how the magnitude of pest suppression was affected by predator community composition.We found positive synergistic effects between manure fertilisation and predator spillover on the suppression of aphid growth. Top-down suppression of aphids was more effective under manure fertilisation and in presence of specialist predators (ladybirds). Bottom-up effects on the plant biomass growth dominated in inorganically fertilised plots.Organic and inorganic fertilisation gave the same yield, but through different mechanisms. The abundance of locally emerging predators in the manure treatment increased top-down pest suppression yielding plant biomass levels comparable with inorganically fertilised plants, being the latter driven by bottom-up effects.Synthesis and applications. Organic fertilisation enhanced local emergence of predators increasing top-down pest suppression. In contrast, local predator communities were unable to suppress aphid populations in inorganic and no fertilisation treatments. Here, predator inflow from outside the crop field was essential for lowering aphid population growth. Managing landscapes to promote mobile predators emerges as particularly important for crop fields without manure amendments. We advise the active promotion of both local predators in the crop field and mobile predators in the landscape to secure the conservation of biological insect pest suppression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 133
Typ av publikation
tidskriftsartikel (125)
annan publikation (4)
konferensbidrag (1)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (125)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Roslin, Tomas (132)
Tack, Ayco J. M. (22)
Bommarco, Riccardo (8)
Ovaskainen, Otso (6)
Ekholm, Adam (6)
Huotari, Tea (4)
visa fler...
Abrego, Nerea (4)
Miller, Kirsten (4)
Hambäck, Peter A. (4)
Jonsson, Tomas (4)
Curtsdotter, Alva (4)
Somervuo, Panu (3)
Lindahl, Björn (3)
Abdelfattah, Ahmed (3)
Ronquist, Fredrik, 1 ... (3)
Andersson, Anders F. (3)
Schmidt, Niels Marti ... (3)
Hambäck, Peter (3)
Strona, Giovanni (3)
Öpik, Maarja (3)
Tack, Ayco J. M., 19 ... (3)
Weingartner, Elisabe ... (3)
Agan, Ahto (2)
Bahram, Mohammad (2)
Nilsson, R. Henrik, ... (2)
Kurina, Olavi (2)
Põldmaa, Kadri (2)
Põlme, Sergei (2)
Mikryukov, Vladimir (2)
Ramin, Mohammad (2)
Tikhonov, Gleb (2)
Agenäs, Sigrid (2)
Aguilera Nuñez, Guil ... (2)
Cirtwill, Alyssa (2)
Ronquist, Fredrik (2)
Koricheva, Julia (2)
Castagneyrol, Bastie ... (2)
Danielsson, Rebecca (2)
Anslan, Sten (2)
Zizka, Alexander (2)
Dai, Dong Qin (2)
Novotny, Vojtech (2)
Delgado-Baquerizo, M ... (2)
Netherway, Tarquin (2)
Kohout, Petr (2)
Stone, Graham N. (2)
Banks, H. T. (2)
van Dijk, Laura J. A ... (2)
Bråthen, Kari Anne (2)
Bauters, Marijn (2)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (114)
Stockholms universitet (33)
Lunds universitet (6)
Naturhistoriska riksmuseet (5)
Högskolan i Skövde (4)
Göteborgs universitet (3)
visa fler...
Kungliga Tekniska Högskolan (2)
Linköpings universitet (2)
Umeå universitet (1)
Linnéuniversitetet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (133)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (130)
Lantbruksvetenskap (11)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy