SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rothwell Peter M.) "

Sökning: WFRF:(Rothwell Peter M.)

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  • Malik, Rainer, et al. (författare)
  • Low-frequency and common genetic variation in ischemic stroke : The METASTROKE collaboration
  • 2016
  • Ingår i: Neurology. - 1526-632X. ; 86:13, s. 26-1217
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To investigate the influence of common and low-frequency genetic variants on the risk of ischemic stroke (all IS) and etiologic stroke subtypes.METHODS: We meta-analyzed 12 individual genome-wide association studies comprising 10,307 cases and 19,326 controls imputed to the 1000 Genomes (1 KG) phase I reference panel. We selected variants showing the highest degree of association (p < 1E-5) in the discovery phase for replication in Caucasian (13,435 cases and 29,269 controls) and South Asian (2,385 cases and 5,193 controls) samples followed by a transethnic meta-analysis. We further investigated the p value distribution for different bins of allele frequencies for all IS and stroke subtypes.RESULTS: We showed genome-wide significance for 4 loci: ABO for all IS, HDAC9 for large vessel disease (LVD), and both PITX2 and ZFHX3 for cardioembolic stroke (CE). We further refined the association peaks for ABO and PITX2. Analyzing different allele frequency bins, we showed significant enrichment in low-frequency variants (allele frequency <5%) for both LVD and small vessel disease, and an enrichment of higher frequency variants (allele frequency 10% and 30%) for CE (all p < 1E-5).CONCLUSIONS: Our findings suggest that the missing heritability in IS subtypes can in part be attributed to low-frequency and rare variants. Larger sample sizes are needed to identify the variants associated with all IS and stroke subtypes.
  •  
6.
  • Williams, Frances M. K., et al. (författare)
  • Ischemic stroke is associated with the ABO locus : the EuroCLOT study
  • 2013
  • Ingår i: Annals of Neurology. - : Wiley-Blackwell. - 0364-5134 .- 1531-8249. ; 73:1, s. 16-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: End-stage coagulation and the structure/function of fibrin are implicated in the pathogenesis of ischemic stroke. We explored whether genetic variants associated with end-stage coagulation in healthy volunteers account for the genetic predisposition to ischemic stroke and examined their influence on stroke subtype. Methods: Common genetic variants identified through genome-wide association studies of coagulation factors and fibrin structure/function in healthy twins (n = 2,100, Stage 1) were examined in ischemic stroke (n = 4,200 cases) using 2 independent samples of European ancestry (Stage 2). A third clinical collection having stroke subtyping (total 8,900 cases, 55,000 controls) was used for replication (Stage 3). Results: Stage 1 identified 524 single nucleotide polymorphisms (SNPs) from 23 linkage disequilibrium blocks having significant association (p < 5 x 10(-8)) with 1 or more coagulation/fibrin phenotypes. The most striking associations included SNP rs5985 with factor XIII activity (p = 2.6 x 10(-186)), rs10665 with FVII (p = 2.4 x 10(-47)), and rs505922 in the ABO gene with both von Willebrand factor (p = 4.7 x 10(-57)) and factor VIII (p = 1.2 x 10(-36)). In Stage 2, the 23 independent SNPs were examined in stroke cases/noncases using MOnica Risk, Genetics, Archiving and Monograph (MORGAM) and Wellcome Trust Case Control Consortium 2 collections. SNP rs505922 was nominally associated with ischemic stroke (odds ratio = 0.94, 95% confidence interval = 0.88-0.99, p = 0.023). Independent replication in Meta-Stroke confirmed the rs505922 association with stroke, beta (standard error, SE) = 0.066 (0.02), p = 0.001, a finding specific to large-vessel and cardioembolic stroke (p = 0.001 and p = < 0.001, respectively) but not seen with small-vessel stroke (p = 0.811). Interpretation: ABO gene variants are associated with large-vessel and cardioembolic stroke but not small-vessel disease. This work sheds light on the different pathogenic mechanisms underpinning stroke subtype.
  •  
7.
  •  
8.
  • Cheng, Yu-Ching, et al. (författare)
  • Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near HABP2.
  • 2016
  • Ingår i: Stroke; a journal of cerebral circulation. - 1524-4628. ; 47:2, s. 307-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years.
  •  
9.
  • Hachinski, Vladimir, et al. (författare)
  • Stroke: Working Toward a Prioritized World Agenda
  • 2010
  • Ingår i: Stroke: a journal of cerebral circulation. - 1524-4628. ; 41:6, s. 1084-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods-Preliminary work was performed by 7 working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results-Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent "silo" mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (eg, social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a "Brain Health" concept that enables promotion of preventive measures. Conclusions-To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress.
  •  
10.
  • Hachinski, Vladimir, et al. (författare)
  • Stroke: Working toward a Prioritized World Agenda
  • 2010
  • Ingår i: Cerebrovascular Diseases. - : S. Karger AG. - 1421-9786 .- 1015-9770. ; 30:2, s. 127-147
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: The aim of the Synergium was to devise and prioritize new ways of accelerating progress in reducing the risks, effects, and consequences of stroke. Methods: Preliminary work was performed by 7 working groups of stroke leaders followed by a synergium (a forum for working synergistically together) with approximately 100 additional participants. The resulting draft document had further input from contributors outside the synergium. Results: Recommendations of the Synergium are: Basic Science, Drug Development and Technology: There is a need to develop: (1) New systems of working together to break down the prevalent 'silo' mentality; (2) New models of vertically integrated basic, clinical, and epidemiological disciplines; and (3) Efficient methods of identifying other relevant areas of science. Stroke Prevention: (1) Establish a global chronic disease prevention initiative with stroke as a major focus. (2) Recognize not only abrupt clinical stroke, but subtle subclinical stroke, the commonest type of cerebrovascular disease, leading to impairments of executive function. (3) Develop, implement and evaluate a population approach for stroke prevention. (4) Develop public health communication strategies using traditional and novel (e. g., social media/marketing) techniques. Acute Stroke Management: Continue the establishment of stroke centers, stroke units, regional systems of emergency stroke care and telestroke networks. Brain Recovery and Rehabilitation: (1) Translate best neuroscience, including animal and human studies, into poststroke recovery research and clinical care. (2) Standardize poststroke rehabilitation based on best evidence. (3) Develop consensus on, then implementation of, standardized clinical and surrogate assessments. (4) Carry out rigorous clinical research to advance stroke recovery. Into the 21st Century: Web, Technology and Communications: (1) Work toward global unrestricted access to stroke-related information. (2) Build centralized electronic archives and registries. Foster Cooperation Among Stakeholders (large stroke organizations, nongovernmental organizations, governments, patient organizations and industry) to enhance stroke care. Educate and energize professionals, patients, the public and policy makers by using a 'Brain Health' concept that enables promotion of preventive measures. Conclusions: To accelerate progress in stroke, we must reach beyond the current status scientifically, conceptually, and pragmatically. Advances can be made not only by doing, but ceasing to do. Significant savings in time, money, and effort could result from discontinuing practices driven by unsubstantiated opinion, unproven approaches, and financial gain. Systematic integration of knowledge into programs coupled with careful evaluation can speed the pace of progress. Copyright (C) 2010 American Heart Association. Inc., S. Karger AG, Basel, and John Wiley & Sons, Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43
Typ av publikation
tidskriftsartikel (38)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Rothwell, Peter M. (32)
Norrving, Bo (22)
Dichgans, Martin (17)
Lindgren, Arne (15)
Rosand, Jonathan (13)
Markus, Hugh S. (13)
visa fler...
Sharma, Pankaj (12)
Mitchell, Braxton D. (12)
Traylor, Matthew (12)
Kittner, Steven J. (11)
Meschia, James F (10)
Worrall, Bradford B. (10)
Slowik, Agnieszka (10)
Thijs, Vincent (10)
Bevan, Steve (10)
Jern, Christina, 196 ... (9)
Sudlow, Cathie (9)
Malik, Rainer (9)
Tatlisumak, Turgut (8)
Woo, Daniel (8)
Lemmens, Robin (8)
Hankey, Graeme J. (7)
Jimenez-Conde, Jordi (7)
Fornage, Myriam (7)
Cole, John W. (6)
Schmidt, Reinhold (6)
Sacco, Ralph L. (6)
Holliday, Elizabeth ... (6)
Cheng, Yu-Ching (6)
Thrift, Amanda G. (5)
Saleheen, Danish (5)
Thorleifsson, Gudmar (5)
Lee, Jin-Moo (5)
Leys, Didier (5)
Gretarsdottir, Solve ... (5)
Melander, Olle (4)
Ikram, M. Arfan (4)
Zhao, Wei (4)
Rolfs, Arndt (4)
Thorsteinsdottir, Un ... (4)
Stefansson, Kari (4)
Farrall, Martin (4)
Anderson, Christophe ... (4)
Devan, William J. (4)
Montaner, Joan (4)
Furie, Karen L. (4)
Fernandez-Cadenas, I ... (4)
de Bakker, Paul I. W ... (4)
Grewal, Raji P. (4)
Rundek, Tatjana (4)
visa färre...
Lärosäte
Lunds universitet (32)
Göteborgs universitet (11)
Karolinska Institutet (10)
Umeå universitet (5)
Uppsala universitet (5)
Kungliga Tekniska Högskolan (2)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (43)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (39)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy