SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rubin Mark A) ;lar1:(uu)"

Sökning: WFRF:(Rubin Mark A) > Uppsala universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Reyna, Matthew A, et al. (författare)
  • Pathway and network analysis of more than 2500 whole cancer genomes
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The catalog of cancer driver mutations in protein-coding genes has greatly expanded in the past decade. However, non-coding cancer driver mutations are less well-characterized and only a handful of recurrent non-coding mutations, most notably TERT promoter mutations, have been reported. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancer across 38 tumor types, we perform multi-faceted pathway and network analyses of non-coding mutations across 2583 whole cancer genomes from 27 tumor types compiled by the ICGC/TCGA PCAWG project that was motivated by the success of pathway and network analyses in prioritizing rare mutations in protein-coding genes. While few non-coding genomic elements are recurrently mutated in this cohort, we identify 93 genes harboring non-coding mutations that cluster into several modules of interacting proteins. Among these are promoter mutations associated with reduced mRNA expression in TP53, TLE4, and TCF4. We find that biological processes had variable proportions of coding and non-coding mutations, with chromatin remodeling and proliferation pathways altered primarily by coding mutations, while developmental pathways, including Wnt and Notch, altered by both coding and non-coding mutations. RNA splicing is primarily altered by non-coding mutations in this cohort, and samples containing non-coding mutations in well-known RNA splicing factors exhibit similar gene expression signatures as samples with coding mutations in these genes. These analyses contribute a new repertoire of possible cancer genes and mechanisms that are altered by non-coding mutations and offer insights into additional cancer vulnerabilities that can be investigated for potential therapeutic treatments.
  •  
2.
  • Jones, Robert P., et al. (författare)
  • Patterns of Recurrence After Resection of Pancreatic Ductal Adenocarcinoma : A Secondary Analysis of the ESPAC-4 Randomized Adjuvant Chemotherapy Trial
  • 2019
  • Ingår i: JAMA Surgery. - : AMER MEDICAL ASSOC. - 2168-6254 .- 2168-6262. ; 154:11, s. 1038-1048
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: The patterns of disease recurrence after resection of pancreatic ductal adenocarcinoma with adjuvant chemotherapy remain unclear.Objective: To define patterns of recurrence after adjuvant chemotherapy and the association with survival.Design, Setting, and Participants: Prospectively collected data from the phase 3 European Study Group for Pancreatic Cancer 4 adjuvant clinical trial, an international multicenter study. The study included 730 patients who had resection and adjuvant chemotherapy for pancreatic cancer. Data were analyzed between July 2017 and May 2019.Interventions: Randomization to adjuvant gemcitabine or gemcitabine plus capecitabine.Main Outcomes and Measures: Overall survival, recurrence, and sites of recurrence.Results: Of the 730 patients, median age was 65 years (range 37-81 years), 414 were men (57%), and 316 were women (43%). The median follow-up time from randomization was 43.2 months (95% CI, 39.7-45.5 months), with overall survival from time of surgery of 27.9 months (95% CI, 24.8-29.9 months) with gemcitabine and 30.2 months (95% CI, 25.8-33.5 months) with the combination (HR, 0.81; 95% CI, 0.68-0.98; P=.03). The 5-year survival estimates were 17.1% (95% CI, 11.6%-23.5%) and 28.0% (22.0%-34.3%), respectively. Recurrence occurred in 479 patients (65.6%); another 78 patients (10.7%) died without recurrence. Local recurrence occurred at a median of 11.63 months (95% CI, 10.05-12.19 months), significantly different from those with distant recurrence with a median of 9.49 months (95% CI, 8.44-10.71 months) (HR, 1.21; 95% CI, 1.01-1.45; P=.04). Following recurrence, the median survival was 9.36 months (95% CI, 8.08-10.48 months) for local recurrence and 8.94 months (95% CI, 7.82-11.17 months) with distant recurrence (HR, 0.89; 95% CI, 0.73-1.09; P=.27). The median overall survival of patients with distant-only recurrence (23.03 months; 95% CI, 19.55-25.85 months) or local with distant recurrence (23.82 months; 95% CI, 17.48-28.32 months) was not significantly different from those with only local recurrence (24.83 months; 95% CI, 22.96-27.63 months) (P=.85 and P=.35, respectively). Gemcitabine plus capecitabine had a 21% reduction of death following recurrence compared with monotherapy (HR, 0.79; 95% CI, 0.64-0.98; P=.03).Conclusions and Relevance: There were no significant differences between the time to recurrence and subsequent and overall survival between local and distant recurrence. Pancreatic cancer behaves as a systemic disease requiring effective systemic therapy after resection.Trial Registration: ClinicalTrials.gov identifier: NCT00058201, EudraCT 2007-004299-38, and ISRCTN 96397434. This secondary analysis of a randomized clinical trial investigates patterns of recurrence after adjuvant chemotherapy in pancreatic cancer and the association with survival.
  •  
3.
  • Mucci, Lorelei A., et al. (författare)
  • Nine-gene molecular signature is not associated with prostate cancer death in a watchful waiting cohort
  • 2008
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - Baltimore : Waverly Press. - 1055-9965 .- 1538-7755. ; 17:1, s. 249-251
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor molecular markers hold promise to distinguish potentially lethal from indolent prostate cancer and to guide treatment choices. A previous study identified a nine-gene molecular signature in tumors associated with prostate-specific antigen relapse after prostatectomy. We examined this molecular model in relation to prostate cancer death among 172 men with initially localized disease. We quantified protein expression of the nine genes in tumors to classify progression risk. Accounting for clinical prognostic factors, the nine-gene model did not provide discrimination to predict lethal and indolent prostate cancer.
  •  
4.
  • Mucci, Lorelei A., et al. (författare)
  • Testing a multigene signature of prostate cancer death in the Swedish Watchful Waiting Cohort
  • 2008
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - Philadelphia : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 17:7, s. 1682-1688
  • Tidskriftsartikel (refereegranskat)abstract
    • Although prostate cancer is a leading cause of cancer death, most men die with and not from their disease, underscoring the urgency to distinguish potentially lethal from indolent prostate cancer. We tested the prognostic value of a previously identified multigene signature of prostate cancer progression to predict cancer-specific death. The Örebro Watchful Waiting Cohort included 172 men with localized prostate cancer of whom 40 died of prostate cancer. We quantified protein expression of the markers in tumor tissue by immunohistochemistry and stratified the cohort by quintiles according to risk classification. We accounted for clinical variables (age, Gleason, nuclear grade, and tumor volume) using Cox regression and calculated receiver operator curves to compare discriminatory ability. The hazard ratio of prostate cancer death increased with increasing risk classification by the multigene model, with a 16-fold greater risk comparing highest-risk versus lowest-risk strata, and predicted outcome independent of clinical factors (P = 0.002). The best discrimination came from combining information from the multigene markers and clinical data, which perfectly classified the lowest-risk stratum where no one developed lethal disease; using the two lowest-risk groups as reference, the hazard ratio (95% confidence interval) was 11.3 (4.0-32.8) for the highest-risk group and difference in mortality at 15 years was 60% (50-70%). The combined model provided greater discriminatory ability (area under the curve = 0.78) than the clinical model alone (area under the curve = 0.71; P = 0.04). Molecular tumor markers can add to clinical variables to help distinguish lethal and indolent prostate cancer and hold promise to guide treatment decisions. 
  •  
5.
  • Voight, Benjamin F, et al. (författare)
  • Plasma HDL cholesterol and risk of myocardial infarction : a mendelian randomisation study
  • 2012
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 380:9841, s. 572-580
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian randomisation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.METHODS: We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20,913 myocardial infarction cases, 95,407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12,482 cases of myocardial infarction and 41,331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.FINDINGS: Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher, p=8×10(-13)) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with non-carriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84-0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88-1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58-0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68-1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45-1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69-2·69, p=2×10(-10)).INTERPRETATION: Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy