SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rudstam Lars G.) ;pers:(Woolway R. Iestyn)"

Sökning: WFRF:(Rudstam Lars G.) > Woolway R. Iestyn

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sharma, Sapna, et al. (författare)
  • Loss of Ice Cover, Shifting Phenology, and More Extreme Events in Northern Hemisphere Lakes
  • 2021
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 126:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term lake ice phenological records from around the Northern Hemisphere provide unique sensitive indicators of climatic variations, even prior to the existence of physical meteorological measurement stations. Here, we updated ice phenology records for 60 lakes with time-series ranging from 107-204 years to provide the first re-assessment of Northern Hemispheric ice trends since 2004 by adding 15 additional years of ice phenology records and 40 lakes to our study. We found that, on average, ice-on was 11.0 days later, ice-off was 6.8 days earlier, and ice duration was 17.0 days shorter per century over the entire record for each lake. Trends in ice-on and ice duration were six times faster in the last 25-year period (1992-2016) than previous quarter centuries. More extreme events in recent decades, including late ice-on, early ice-off, shorter periods of ice cover, or no ice cover at all, contribute to the increasing rate of lake ice loss. Reductions in greenhouse gas emissions could limit increases in air temperature and abate losses in lake ice cover that would subsequently limit ecological, cultural, and socioeconomic consequences, such as increased evaporation rates, warmer water temperatures, degraded water quality, and the formation of toxic algal blooms.
  •  
2.
  • Stockwell, Jason D., et al. (författare)
  • Storm impacts on phytoplankton community dynamics in lakes
  • 2020
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 26:5, s. 2756-2784
  • Forskningsöversikt (refereegranskat)abstract
    • In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy