SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruediger Thomas) ;mspu:(researchreview)"

Sökning: WFRF:(Ruediger Thomas) > Forskningsöversikt

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Albert, Christian, et al. (författare)
  • Neutrophil Gelatinase-Associated Lipocalin Measured on Clinical Laboratory Platforms for the Prediction of Acute Kidney Injury and the Associated Need for Dialysis Therapy : A Systematic Review and Meta-analysis
  • 2020
  • Ingår i: American Journal of Kidney Diseases. - : Elsevier BV. - 0272-6386 .- 1523-6838. ; 76:6, s. 826-
  • Forskningsöversikt (refereegranskat)abstract
    • Rationale & Objective: The usefulness of measures of neutrophil gelatinase-associated lipocalin (NGAL) in urine or plasma obtained on clinical laboratory platforms for predicting acute kidney injury (AKI) and AKI requiring dialysis (AKI-D) has not been fully evaluated. We sought to quantitatively summarize published data to evaluate the value of urinary and plasma NGAL for kidney risk prediction.Study Design: Literature-based meta-analysis and individual-study-data meta-analysis of diagnostic studies following PRISMA-IPD guidelines.Setting & Study Populations: Studies of adults investigating AKI, severe AKI, and AKI-D in the setting of cardiac surgery, intensive care, or emergency department care using either urinary or plasma NGAL measured on clinical laboratory platforms.Selection Criteria for Studies: PubMed, Web of Science, Cochrane Library, Scopus, and congress abstracts ever published through February 2020 reporting diagnostic test studies of NGAL measured on clinical laboratory platforms to predict AKI.Data Extraction: Individual-study-data meta analysis was accomplished by giving authors data specifications tailored to their studies and requesting standardized patient-level data analysis.Analytical Approach: Individual-study-data meta analysis used a bivariate time-to-event model for interval-censored data from which discriminative ability (AUC) was characterized. NGAL cutoff concentrations at 95% sensitivity, 95% specificity, and optimal sensitivity and specificity were also estimated. Models incorporated as confounders the clinical setting and use versus nonuse of urine output as a criterion for AKI. A literature-based meta-analysis was also performed for all published studies including those for which the authors were unable to provide individual-study data analyses.Results: We included 52 observational studies involving 13,040 patients. We analyzed 30 data sets for the individual-study-data meta-analysis. For AKI, severe AKI, and AKI-D, numbers of events were 837, 304, and 103 for analyses of urinary NGAL, respectively; these values were 705, 271, and 178 for analyses of plasma NGAL. Discriminative performance was similar in both meta-analyses. Individual-study-data meta-analysis AUCs for urinary NGAL were 0.75 (95% CI, 0.73-0.76) and 0.80 (95% CI, 0.79-0.81) for severe AKI and AKI-D, respectively; for plasma NGAL, the corresponding AUCs were 0.80 (95% CI, 0.790.81) and 0.86 (95% CI, 0.84-0.8 6). Cutoff concentrations at 95% specificity for urinary NGAL were >580 ng/mL with 27% sensitivity for severe AKI and >589 ng/mL with 24% sensitivity for AKI-D. Corresponding cutoffs for plasma NGAL were >364 ng/mL with 44% sensitivity and >546 ng/mL with 26% sensitivity, respectively.Limitations: Practice variability in initiation of dialysis. Imperfect harmonization of data across studies. Conclusions: Urinary and plasma NGAL concentrations may identify patients at high risk for AKI in clinical research and practice. The cutoff concentrations reported in this study require prospective evaluation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy