SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Russo D) ;lar1:(kth)"

Sökning: WFRF:(Russo D) > Kungliga Tekniska Högskolan

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abazov, V. M., et al. (författare)
  • The upgraded DO detector
  • 2006
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 565:2, s. 463-537
  • Tidskriftsartikel (refereegranskat)abstract
    • The DO experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid -argon calorimeters and central muon detector, remaining from Run 1, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DO.
  •  
2.
  • Acharya, B. S., et al. (författare)
  • Introducing the CTA concept
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
3.
  • Actis, M., et al. (författare)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • Ingår i: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
4.
  • Adriani, O., et al. (författare)
  • The PAMELA space mission
  • 2008
  • Ingår i: Astroparticle, Part. Space Phys., Detect. Med. Phys. Appl. - Proc. Conf.. - : WORLD SCIENTIFIC. - 9812819088 - 9789812819086 ; , s. 858-864
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (a Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics) experiment, is a satellite-borne particle spectrometer. It was launched on 15th June 2006 from the Baikonur cosmodrome in Kazakhstan, is installed into the Russian Resurs-DK1 satellite. PAMELA is composed of a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. Among the PAMELA major objectives are the study of charged particles in the cosmic radiation, the investigation of the nature of dark matter, by mean of the measure of the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved. PAMELA has been in a nearly continuous data taking mode since llth July 2006. The status of the apparatus and performances will be presented.
  •  
5.
  • Boezio, M., et al. (författare)
  • The first year in orbit of the pamela experiment
  • 2007
  • Ingår i: Proceedings of the 30th International Cosmic Ray Conference, ICRC 2007. - : Universidad Nacional Autonoma de Mexico. ; , s. 99-102
  • Konferensbidrag (refereegranskat)abstract
    • On the 15th of June 2006, the PAMELA experiment mounted on the Resurs DK1 satellite, was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. PAMELA is a satellite-borne apparatus designed to study charged particles in the cosmic radiation, to investigate the nature of dark matter, measuring the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved, and to search for antinuclei with unprecedented sensitivity. The PAMELA apparatus comprises a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. We will present the status of the apparatus after one year in orbit. Furthermore, we will discuss the PAMELA in-flight performances.
  •  
6.
  • Boezio, M., et al. (författare)
  • The PAMELA space experiment : First year of operation
  • 2008
  • Ingår i: Journal of Physics, Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596. ; 110:6
  • Tidskriftsartikel (refereegranskat)abstract
    • On the 15th of June 2006 the PAMELA experiment, mounted on the Resurs DK1 satellite, was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. PAMELA is a satellite-borne apparatus designed to study charged particles in the cosmic radiation, to investigate the nature of dark matter, measuring the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved, and to search for antinuclei with unprecedented sensitivity. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows charged particle identification over a wide energy range. © 2008 IOP Publishing Ltd.
  •  
7.
  • Casolino, M., et al. (författare)
  • Launch of the space experiment PAMELA
  • 2008
  • Ingår i: Advances in Space Research. - : Elsevier. - 0273-1177 .- 1879-1948. ; 42:3, s. 455-466
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of 10-8. The experiment, housed on board the Russian Resurs-DK I satellite, was launched on June 15th, 2006 in a 350 x 600 km orbit with all inclination of 70'. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, time-of-flight, and rigidity information. Lepton/hadron identification is performed by a silicon-tungsten calorimeter and a neutron detector placed at the bottom of the device. An anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the calorimeter, the neutron detector, and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we describe the experiment, its scientific objectives, and the performance in the first months after launch.
  •  
8.
  • Casolino, M., et al. (författare)
  • Magnetospheric and solar physics observations with the PAMELA experiment
  • 2008
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 588:1-2, s. 243-246
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite-borne experiment designed to make long duration measurements of the cosmic radiation in Low Earth Orbit. It is devoted to the detection of the cosmic-ray spectra in the 100 MeV-300 GeV range with primary scientific goal the measurement of antiproton and positron spectra over the largest energy range ever achieved. Other tasks include the search for antinuclei with unprecedented sensitivity and the measurement of the light nuclear component of cosmic rays. In addition, PAMELA can investigate phenomena connected with solar and Earth physics. The apparatus consists of: a Time of Flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work we present some measurements of galactic, secondary and trapped particles performed in the first months of operation.
  •  
9.
  • Galper, A. M., et al. (författare)
  • International Russian-Italian mission "Rim-Pamela
  • 2009
  • Ingår i: Proceedings of the 13th Lomonosov Conference on Elementary Particle Physics. - : WORLD SCIENTIFIC. - 9812837582 - 9789812837585 ; , s. 199-206
  • Konferensbidrag (refereegranskat)abstract
    • The successful launch of spacecraft "RESURS DK" 1 with precision magnetic spectrometer "PAMELA" onboard was executed at Baikonur cosmodrome 15 June 2006. The primary phase of realization of International Russian-Italian Project "RIM-PAMELA" with German and Swedish scientists' participation has begun since the launch of instrument "PAMELA" that has mainly been directed to investigate the fluxes of galactic cosmic rays. This report contains the main scientific Project's tasks and the conditions of science program's implementation after one year since exploration has commenced.
  •  
10.
  • Papini, P., et al. (författare)
  • In-flight performances of the PAMELA satellite experiment
  • 2008
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 588:1-2, s. 259-266
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satcllite-borne experiment designed to study with great accuracy charged particles in the cosmic radiation with a particular focus on antiparticles. The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June 15, 2006 in a 350 x 600 km orbit with an inclination of 70 degrees. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows charged particle identification over a wide energy range. In this work, the detector design is reviewed and the in-orbit performances in the first months after the launch are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy