SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ryde Ulf) ;pers:(Hu LiHong)"

Sökning: WFRF:(Ryde Ulf) > Hu LiHong

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Genheden, Samuel, et al. (författare)
  • Accurate Predictions of Nonpolar Solvation Free Energies Require Explicit Consideration of Binding-Site Hydration
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 133:33, s. 13081-13092
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuum solvation methods are frequently used to increase the efficiency of computational methods to estimate free energies. In this paper, we have evaluated how well such methods estimate the nonpolar solvation free-energy change when a ligand binds to a protein. Three different continuum methods at various levels of approximation were considered, viz., the polarized continuum model (PCM), a method based on cavity and dispersion terms (CD), and a method based on a linear relation to the solvent-accessible surface area (SASA). Formally rigorous double-decoupling thermodynamic integration was used as a benchmark for the continuum methods. We have studied four protein-ligand complexes with binding sites of varying solvent exposure, namely the binding of phenol to ferritin, a biotin analogue to avidin, 2-aminobenzimidazole to trypsin, and a substituted galactoside to galectin-3. For ferritin and avidin, which have relatively hidden binding sites, rather accurate nonpolar solvation free energies could be obtained with the continuum methods if the binding site is prohibited to be filled by continuum water in the unbound state, even though the simulations and experiments show that the ligand replaces several water molecules upon binding. For the more solvent exposed binding sites of trypsin and galectin-3, no accurate continuum estimates could be obtained, even if the binding site was allowed or prohibited to be filled by continuum water. This shows that continuum methods fail to give accurate free energies on a wide range of systems with varying solvent exposure because they lack a microscopic picture of binding-site hydration as well as information about the entropy of water molecules that are in the binding site before the ligand binds. Consequently, binding affinity estimates based upon continuum solvation methods will give absolute binding energies that may differ by up to 200 kJ/mol depending on the method used. Moreover, even relative energies between ligands with the same scaffold may differ by up to 75 kJ/mol. We have tried to improve the continuum solvation methods by adding information about the solvent exposure of the binding site or the hydration of the binding site, and the results are promising at least for this small set of complexes.
  •  
2.
  • Hu, LiHong, et al. (författare)
  • Accurate reaction energies in proteins obtained by combining QM/MM and large QM calculations
  • 2013
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 9, s. 640-649
  • Tidskriftsartikel (refereegranskat)abstract
    • We here suggest and test a new method to obtain stable energies in proteins for charge-neutral reactions by running large quantum mechanical (QM) calculations on structures obtained by combined QM and molecular mechanics (QM/MM) geometry optimisation on several snapshots from molecular dynamics simulations. As a test case, we use a proton transfer between a metal-bound cysteine residue and a second-sphere histidine residue in the active site of [Ni,Fe] hydrogenase, which has been shown to be very sensitive to the surroundings. We include in the QM calculations all residues within 4.5 Å of the active site, two capped residues on each side of the active-site residues, as well as all charged groups that are buried inside the protein, which for this enzyme includes three iron–sulphur clusters, in total 930 atoms. These calculations are performed at the BP86/def2-SV(P) level, but the energies are then extrapolated to the B3LYP/def2-TZVP level with a smaller QM system and zero-point energy, entropy, and thermal effects are added. We test three approaches to model the remaining atoms of the protein solvent, viz. by standard QM/MM approaches using either mechanical or electrostatic embedding, or by using a continuum solvation model for the large QM systems. Quite encouragingly, the three approaches give the same results within 13 kJ/mol and variations in the size of the QM system do not change the energies by more than 8 kJ/mol, provided that the QM/MM junctions are not moved closer to the QM system. The statistical precision for the average over ten snapshots is 1–3 kJ/mol.
  •  
3.
  • Hu, LiHong, et al. (författare)
  • Comparison of Methods to Obtain Force-Field Parameters for Metal Sites
  • 2011
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 7:8, s. 2452-2463
  • Tidskriftsartikel (refereegranskat)abstract
    • We have critically examined and compared various ways to obtain standard harmonic molecular mechanics (MM) force-field parameters for metal sites in proteins, using the 12 most common Zn2+ sites as test cases. We show that the parametrization of metal sites is hard to treat with automatic methods. The choice of method is a compromise between speed and accuracy and therefore depends on the intended use of the parameters. If the metal site is not of central interest in the investigation, for example, a structural metal far from the active site, a simple and fast parametrization is normally enough, using either a nonbonded model with restraints or a bonded parametrization based on the method of Seminario. On the other hand, if the metal site is of central interest in the investigation, a more accurate method is needed to give quantitative results, for example, the method by Norrby and Liljefors. The former methods are semiautomatic and can be performed in seconds, once a quantum mechanical (QM) geometry optimization and frequency calculation has been performed, whereas the latter method typically takes several days and requires significant human intervention. All approaches require a careful selection of the atom types used. For a nonbonded model, standard atom types can be used, whereas for a bonded model, it is normally wise to use special atom types for each metal ligand. For accurate results, new atom types for all atoms in the metal site can be used. Atomic charges should also be considered. Typically, QM restrained electrostatic potential charges are accurate and easy to obtain once the QM calculation is performed, and they allow for charge transfer within the complex. For negatively charged complexes, it should be checked that hydrogen atoms of the ligands get proper charges. Finally, water ligands pose severe problems for bonded models in force fields that ignore nonbonded interactions for atoms separated by two bonds. Complexes with a single water ligand can normally be accurately treated with a bonded potential, once it is ensured that the water H atoms have nonzero Lennard-Jones parameters. However, for metal sites with several water molecules, a nonbonded model with restraints (taken from the QM calculations) is more stable.
  •  
4.
  • Hu, LiHong, et al. (författare)
  • Do quantum mechanical energies calculated for small models of protein-active sites converge?
  • 2009
  • Ingår i: Journal of physical chemistry. A. - : American Chemical Society (ACS). - 1520-5215 .- 1089-5639. ; 113:43, s. 11793-11800
  • Tidskriftsartikel (refereegranskat)abstract
    • A common approach for the computational modeling of enzyme reactions is to study a rather small model of the active site (20-200 atoms) with quantum mechanical (QM) methods, modeling the rest of the surroundings by a featureless continuum with a dielectric constant of approximately 4. In this paper, we discuss how the residues included in the QM model should be selected and how many residues need to be included before reaction energies converge. As a test case, we use a proton-transfer reaction between a first-sphere cysteine ligand and a second-sphere histidine group in the active site of [Ni,Fe] hydrogenase. We show that it is not a good approach to add groups according to their distance to the active site. A better approach is to add groups according to their contributions to the QM/MM energy difference. However, the energies can still vary by up to 50 kJ/mol for QM systems of sizes up to 230 atoms. In fact, the QM-only approach is based on the hope that a large number of sizable contributions will cancel. Interactions with neutral groups are, in general, short-ranged, with net energy contributions of less than 4 kJ/mol at distances above 5 A from the active site. Interactions with charged groups are much more long-ranged, and interactions with buried charges 20 A from the active site can still contribute by 5 kJ/mol to the reaction energy. Thus, to accurately model the influence of the surroundings on enzyme reaction energies, a detailed and unbiased atomistic account of the surroundings needs to be included.
  •  
5.
  • Hu, LiHong, et al. (författare)
  • On the Convergence of QM/MM Energies
  • 2011
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 7:3, s. 761-777
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the convergence of QM/MM calculations with respect to the size of the QM system. We study a proton transfer between a first-sphere cysteine ligand and a second-sphere histidine group in [Ni,Fe] hydrogenase and use a 446-atom model of the protein, treated purely with QM methods as a reference. We have tested 12 different ways to redistribute charges close to the junctions (to avoid overpolarization of the QM system), but once the junctions are moved away from the active site, there is little need to redistribute the charges. We have tested 13 different variants of QM/MM approaches, including two schemes to correct errors caused by the truncation of the QM system. However, we see little gain from such correction schemes; on the contrary, they are sensitive to the charge-redistribution scheme and may cause large errors if charges are close to the junctions. In fact, the best results were obtained with a mechanical embedding approach that does not employ any correction scheme and ignores polarization. It gives a mean unsigned error for 40 QM systems of different sizes of 7 kJ/mol with a maximum error of 28 kJ/mol. The errors can be significantly decreased if bonds between the QM and MM system (junctions) are moved one residue away from all active-site residues. Then, most QM/MM variants give mean unsigned errors of 5-9 kJ/mol, maximum errors of 16-35 kJ/mol, and only five to seven residues give an error of over 5 kJ/mol. In general, QM/MM calculations converge faster with system size than pure QM calculations.
  •  
6.
  • Hu, LiHong, et al. (författare)
  • Reorganization Energy for Internal Electron Transfer in Multicopper Oxidases.
  • 2011
  • Ingår i: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 115:Online September 28, 2011, s. 13111-13126
  • Tidskriftsartikel (refereegranskat)abstract
    • We have calculated the reorganization energy for the intramolecular electron transfer between the reduced type 1 copper site and the peroxy intermediate of the trinuclear cluster in the multicopper oxidase CueO. The calculations are performed at the combined quantum mechanics and molecular mechanics (QM/MM) level, based on molecular dynamics simulations with tailored potentials for the two copper sites. We obtain a reorganization energy of 91-133 kJ/mol, depending on the theoretical treatment. The two Cu sites contribute by 12 and 22 kJ/mol to this energy, whereas the solvent contribution is 34 kJ/mol. The rest comes from the protein, involving small contributions from many residues. We have also estimated the energy difference between the two electron-transfer states and show that the reduction of the peroxy intermediate is exergonic by 43-87 kJ/mol, depending on the theoretical method. Both the solvent and the protein contribute to this energy difference, especially charged residues close to the two Cu sites. We compare these estimates with energies obtained from QM/MM optimizations and QM calculations in a vacuum and discuss differences between the results obtained at various levels of theory.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy