SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ryde Ulf) ;spr:eng;pers:(Diehl Carl)"

Sökning: WFRF:(Ryde Ulf) > Engelska > Diehl Carl

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Diehl, Carl, et al. (författare)
  • Protein Flexibility and Conformational Entropy in Ligand Design Targeting the Carbohydrate Recognition Domain of Galectin-3.
  • 2010
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 132, s. 14577-14589
  • Tidskriftsartikel (refereegranskat)abstract
    • Rational drug design is predicated on knowledge of the three-dimensional structure of the protein-ligand complex and the thermodynamics of ligand binding. Despite the fundamental importance of both enthalpy and entropy in driving ligand binding, the role of conformational entropy is rarely addressed in drug design. In this work, we have probed the conformational entropy and its relative contribution to the free energy of ligand binding to the carbohydrate recognition domain of galectin-3. Using a combination of NMR spectroscopy, isothermal titration calorimetry, and X-ray crystallography, we characterized the binding of three ligands with dissociation constants ranging over 2 orders of magnitude. (15)N and (2)H spin relaxation measurements showed that the protein backbone and side chains respond to ligand binding by increased conformational fluctuations, on average, that differ among the three ligand-bound states. Variability in the response to ligand binding is prominent in the hydrophobic core, where a distal cluster of methyl groups becomes more rigid, whereas methyl groups closer to the binding site become more flexible. The results reveal an intricate interplay between structure and conformational fluctuations in the different complexes that fine-tunes the affinity. The estimated change in conformational entropy is comparable in magnitude to the binding enthalpy, demonstrating that it contributes favorably and significantly to ligand binding. We speculate that the relatively weak inherent protein-carbohydrate interactions and limited hydrophobic effect associated with oligosaccharide binding might have exerted evolutionary pressure on carbohydrate-binding proteins to increase the affinity by means of conformational entropy.
  •  
2.
  • Kadhirvel, Saraboji, et al. (författare)
  • The Carbohydrate-Binding Site in Galectin-3 Is Preorganized To Recognize a Sugarlike Framework of Oxygens: Ultra-High-Resolution Structures and Water Dynamics
  • 2012
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 51:1, s. 296-306
  • Tidskriftsartikel (refereegranskat)abstract
    • The recognition of carbohydrates by proteins is a fundamental aspect of communication within and between living cells. Understanding the molecular basis of carbohydrate-protein interactions is a prerequisite for the rational design of synthetic ligands. Here we report the high- to ultrahigh-resolution crystal structures of the carbohydrate recognition domain of galectin-3 (Gal3C) in the ligand-free state (1.08 angstrom at 100 K, 1.25 angstrom at 298 K) and in complex with lactose (0.86 angstrom) or glycerol (0.9 angstrom). These structures reveal striking similarities in the positions of water and carbohydrate oxygen atoms in all three states, indicating that the binding site of Gal3C is preorganized to coordinate oxygen atoms in an arrangement that is nearly optimal for the recognition of beta-galactosides. Deuterium nuclear magnetic resonance (NMR) relaxation dispersion experiments and molecular dynamics simulations demonstrate that all water molecules in the lactose-binding site exchange with bulk water on a time scale of nanoseconds or shorter. Nevertheless, molecular dynamics simulations identify transient water binding at sites that agree well with those observed by crystallography, indicating that the energy landscape of the binding site is maintained in solution. All heavy atoms of glycerol are positioned like the corresponding atoms of lactose in the Gal3C complexes. However, binding of glycerol to Gal3C is insignificant in solution at room temperature, as monitored by NMR spectroscopy or isothermal titration calorimetry under conditions where lactose binding is readily detected. These observations make a case for protein cryo-crystallography as a valuable screening method in fragment-based drug discovery and further suggest that identification of water sites might inform inhibitor design.
  •  
3.
  • Diehl, Carl, et al. (författare)
  • Conformational entropy changes upon lactose binding to the carbohydrate recognition domain of galectin-3.
  • 2009
  • Ingår i: Journal of Biomolecular NMR. - : Springer Science and Business Media LLC. - 1573-5001 .- 0925-2738. ; 45:1-2, s. 157-169
  • Tidskriftsartikel (refereegranskat)abstract
    • The conformational entropy of proteins can make significant contributions to the free energy of ligand binding. NMR spin relaxation enables site-specific investigation of conformational entropy, via order parameters that parameterize local reorientational fluctuations of rank-2 tensors. Here we have probed the conformational entropy of lactose binding to the carbohydrate recognition domain of galectin-3 (Gal3), a protein that plays an important role in cell growth, cell differentiation, cell cycle regulation, and apoptosis, making it a potential target for therapeutic intervention in inflammation and cancer. We used (15)N spin relaxation experiments and molecular dynamics simulations to monitor the backbone amides and secondary amines of the tryptophan and arginine side chains in the ligand-free and lactose-bound states of Gal3. Overall, we observe good agreement between the experimental and computed order parameters of the ligand-free and lactose-bound states. Thus, the (15)N spin relaxation data indicate that the molecular dynamics simulations provide reliable information on the conformational entropy of the binding process. The molecular dynamics simulations reveal a correlation between the simulated order parameters and residue-specific backbone entropy, re-emphasizing that order parameters provide useful estimates of local conformational entropy. The present results show that the protein backbone exhibits an increase in conformational entropy upon binding lactose, without any accompanying structural changes.
  •  
4.
  • Genheden, Samuel, et al. (författare)
  • Starting-Condition Dependence of Order Parameters Derived from Molecular Dynamics Simulations
  • 2010
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 6:7, s. 2176-2190
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied how backbone N-H S-2 order parameters calculated from molecular dynamics simulations depend on the method used to calculate them, the starting conditions, and the length of the simulations. Using the carbohydrate binding domain of galectin-3 in the free and lactose-bound states as a test case, we compared the calculated order parameters with experimental data from NMR relaxation. The results indicate that the sampling can be improved by using several starting structures, taking into account conformational heterogeneity reported in crystal structures. However, the improvement is rather limited, and for 93% of the dihedrals that have alternative conformations in the crystal structures, the conformational space is well sampled even if a single conformation is used as the starting structure. Moreover, the agreement with experimental data is improved when using several short simulations, rather than a single long simulation. In the present case, we find that similar to 10 independent simulations provide sufficient sampling, and the ideal length of the simulations is similar to 10 ns, which is similar to 25% longer than the global correlation time for rotational diffusion. On the other hand, the equilibration time appears to be less important, and our results suggest that an equilibration time of 0.25 ns is sufficient. We have also compared four different methods to extract the order parameters from the simulations, namely, the autocorrelation function and isotropic reorientational eigenmode dynamics using three different window sizes. Overall, the four methods yield comparable results, but large differences between the methods may serve to pinpoint cases for which the calculated parameters are unreliable.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy