SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ryde Ulf) ;spr:eng;pers:(Nordlander Ebbe)"

Sökning: WFRF:(Ryde Ulf) > Engelska > Nordlander Ebbe

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Caldararu, Octav, et al. (författare)
  • QM/MM study of the reaction mechanism of sulfite oxidase
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfite oxidase is a mononuclear molybdenum enzyme that oxidises sulfite to sulfate in many organisms, including man. Three different reaction mechanisms have been suggested, based on experimental and computational studies. Here, we study all three with combined quantum mechanical (QM) and molecular mechanical (QM/MM) methods, including calculations with large basis sets, very large QM regions (803 atoms) and QM/MM free-energy perturbations. Our results show that the enzyme is set up to follow a mechanism in which the sulfur atom of the sulfite substrate reacts directly with the equatorial oxo ligand of the Mo ion, forming a Mo-bound sulfate product, which dissociates in the second step. The first step is rate limiting, with a barrier of 39-49 kJ/mol. The low barrier is obtained by an intricate hydrogen-bond network around the substrate, which is preserved during the reaction. This network favours the deprotonated substrate and disfavours the other two reaction mechanisms. We have studied the reaction with both an oxidised and a reduced form of the molybdopterin ligand and quantum-refinement calculations indicate that it is in the normal reduced tetrahydro form in this protein.
  •  
2.
  • Ryabova, Ekaterina, et al. (författare)
  • A comparative reactivity study of microperoxidases based on hemin, mesohemin and deuterohemin
  • 2005
  • Ingår i: Journal of Inorganic Biochemistry. - : Elsevier BV. - 1873-3344 .- 0162-0134. ; 99:3, s. 852-863
  • Tidskriftsartikel (refereegranskat)abstract
    • Three microperoxidases-hemin-6(7)-gly-gly-his methyl ester (HGGH), mesohemin-6(7)-gly-gly-his methyl ester (MGGH) and deuterohemin-6(7)-gly-gly-his methyl ester (DGGH)-have been prepared as models for heme-containing peroxidases by condensation Of glycyl-glycyl-L-histidine methyl ester with the propionic side chains of hemin, mesohemin and deuterohemin, respectively. The three microperoxidases differ in two substituents, R, of the protoporphyrin IX framework (HGGH: R = vinyl, MGGH: R = ethyl, DGGH: R = H). X-band and high field EPR spectra show that the microperoxidases exhibit spectroscopic properties similar to those of metmyoglobin, i.e. a high spin ferric S = 5/2 signal at g(perpendicular to) = 6 and g(parallel to) = 2 and an estimated D value of 7.5 +/- 1 cm(-1). The catalytic activities of the microperoxidases towards K-4[Fe(CN)(6)], L-tyrosine methyl ester and 2,2'-azino(bis(3-ethylbenzothiazoline-6-sulfonic acid)) (ABTS) have been investigated. It was found that all three microperoxidases exhibit peroxidase activity and that the reactions follow the generally accepted peroxidase reaction scheme [Biochem. J. 145 (1975) 93-103] with the exception that the initial formation of a Compound I analogue is the rate-limiting step for the whole process. The general activity trend was found to be MGGH approximate to DGGH > HGGH. For each microperoxidase, DFT calculations (B3LYP) were made on the reactions of compounds 0, I and II with H+, e(-) and H+ + e(-), respectively, in order to probe the possible relationship between the nature of the 2- and 4-substituents of the hemin and the observed reactivity. The computational modeling indicates that the relative energy differences are very small; solvation and electrostatic effects may be factors that decide the relative activities of the microperoxidases. (C) 2005 Elsevier Inc. All rights reserved.
  •  
3.
  • Van Severen, Marie-Céline, et al. (författare)
  • A quantum-mechanical study of the reaction mechanism of sulfite oxidase.
  • 2014
  • Ingår i: Journal of Biological Inorganic Chemistry. - : Springer Science and Business Media LLC. - 1432-1327 .- 0949-8257. ; 19:7, s. 1165-1179
  • Tidskriftsartikel (refereegranskat)abstract
    • The oxidation of sulfite to sulfate by two different models of the active site of sulfite oxidase has been studied. Both protonated and deprotonated substrates were tested. Geometries were optimized with density functional theory (TPSS/def2-SV(P)) and energies were calculated either with hybrid functionals and large basis sets (B3LYP/def2-TZVPD) including corrections for dispersion, solvation, and entropy, or with coupled-cluster theory (LCCSD(T0)) extrapolated toward a complete basis set. Three suggested reaction mechanisms have been compared and the results show that the lowest barriers are obtained for a mechanism where the substrate attacks a Mo-bound oxo ligand, directly forming a Mo-bound sulfate complex, which then dissociates into the products. Such a mechanism is more favorable than mechanisms involving a Mo-sulfite complex with the substrate coordinating either by the S or O atom. The activation energy is dominated by the Coulomb repulsion between the Mo complex and the substrate, which both have a negative charge of -1 or -2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy