SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rylander Christian) ;pers:(Perchiazzi Gaetano)"

Sökning: WFRF:(Rylander Christian) > Perchiazzi Gaetano

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gudmundsson, Magni, et al. (författare)
  • Transpulmonary driving pressure during mechanical ventilation-validation of a non-invasive measurement method
  • 2020
  • Ingår i: Acta Anaesthesiologica Scandinavica. - : Wiley. - 0001-5172 .- 1399-6576. ; 64:2, s. 211-215
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Transpulmonary driving pressure plays an important role in today's understanding of ventilator induced lung injury. We have previously validated a novel non‐invasive method based on stepwise increments of PEEP to assess transpulmonary driving pressure in anaesthetised patients with healthy lungs. The aim of this study was to validate the method in patients who were mechanically ventilated for different diagnoses requiring intensive care. Methods We measured transpulmonary pressure (Ptp) and calculated transpulmonary driving pressure (ΔPtp) in 31 patients undergoing mechanical ventilation in an intensive care unit. Parallel triplicate measurements were performed with the PEEP step method (PtpPSM) and the conventional oesophageal balloon method (Ptpconv). Their agreement was compared using the intraclass correlation coefficient (ICC) and the Bland Altman plot. Result The coefficient of variation for the repeated measurements was 4,3 for ΔPtpPSM and 9,2 for ΔPtpconv. The ICC of 0,864 and the Bland Altman plot indicate good agreement between the two methods. Conclusion The non‐invasive method can be applied in mechanically ventilated patients to measure transpulmonary driving pressure with good repeatability and accuracy comparable to the traditional oesophageal balloon method.
  •  
2.
  • Pellegrini, Mariangela, et al. (författare)
  • Effects of superimposed tissue weight on regional compliance of injured lungs
  • 2016
  • Ingår i: Respiratory Physiology & Neurobiology. - : Elsevier BV. - 1569-9048 .- 1878-1519. ; 228, s. 16-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Computed tomography (CT), together with image analysis technologies, enable the construction of regional volume (V-REG) and local transpulmonary pressure (P-TP,P-REG) maps of the lung. Purpose of this study is to assess the distribution of V-REG vs P-TP,P-REG along the gravitational axis in healthy (HL) and experimental acute lung injury conditions (eALI) at various positive end-expiratory pressures (PEEPS) and inflation volumes. Mechanically ventilated pigs underwent inspiratory hold maneuvers at increasing volumes simultaneously with lung CT scans. eALI was induced via the iv administration of oleic acid. We computed voxel-level V-REG vs P-TP,P-REG curves into eleven isogravitational planes by applying polynomial regressions. Via F-test, we determined that V-REG vs P-TP,P-REG curves derived from different anatomical planes (p-values < 1.4E-3), exposed to different PEEPs (p-values < 1.5E-5) or subtending different lung status (p-values < 3E-3) were statistically different (except for two cases of adjacent planes). Lung parenchyma exhibits different elastic behaviors based on its position and the density of superimposed tissue which can increase during lung injury.
  •  
3.
  •  
4.
  • Pellegrini, Mariangela, et al. (författare)
  • Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse
  • 2020
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - : AMER THORACIC SOC. - 1073-449X .- 1535-4970. ; 3:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL.Objectives: To assess whether external expiratory resistances 1) affect expiratory diaphragmatic contraction during spontaneous breathing, 2) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and 3) reduce tidal atelectasis, preventing hyperinflation.Methods: Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined.Measurements and Main Results: Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure), 1) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%, 2) expiratory flow was reduced and the expiratory time constants became more homogeneous, and 3) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation.Conclusions: The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.
  •  
5.
  • Pellegrini, Mariangela, et al. (författare)
  • Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse.
  • 2020
  • Ingår i: American journal of respiratory and critical care medicine. - 1535-4970. ; 201:10, s. 1218-1229
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL.Objectives: To assess whether external expiratory resistances 1) affect expiratory diaphragmatic contraction during spontaneous breathing, 2) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and 3) reduce tidal atelectasis, preventing hyperinflation.Methods: Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined.Measurements and Main Results: Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure), 1) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%, 2) expiratory flow was reduced and the expiratory time constants became more homogeneous, and 3) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation.Conclusions: The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.
  •  
6.
  • Perchiazzi, Gaetano, et al. (författare)
  • Lung regional stress and strain as a function of posture and ventilatory mode
  • 2011
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 110:5, s. 1374-1383
  • Tidskriftsartikel (refereegranskat)abstract
    • During positive-pressure ventilation parenchymal deformation can be assessed as strain ( volume increase above functional residual capacity) in response to stress (transpulmonary pressure). The aim of this study was to explore the relationship between stress and strain on the regional level using computed tomography in anesthetized healthy pigs in two postures and two patterns of breathing. Airway opening and esophageal pressures were used to calculate stress; change of gas content as assessed from computed tomography was used to calculate strain. Static stress-strain curves and dynamic strain-time curves were constructed, the latter during the inspiratory phase of volume and pressure-controlled ventilation, both in supine and prone position. The lung was divided into nondependent, intermediate, dependent, and central regions: their curves were modeled by exponential regression and examined for statistically significant differences. In all the examined regions, there were strong but different exponential relations between stress and strain. During mechanical ventilation, the end-inspiratory strain was higher in the dependent than in the nondependent regions. No differences between volume- and pressure-controlled ventilation were found. However, during volume control ventilation, prone positioning decreased the end-inspiratory strain of dependent regions and increased it in nondependent regions, resulting in reduced strain gradient. Strain is inhomogeneously distributed within the healthy lung. Prone positioning attenuates differences between dependent and nondependent regions. The regional effects of ventilatory mode and body positioning should be further explored in patients with acute lung injury.
  •  
7.
  •  
8.
  • Perchiazzi, Gaetano, et al. (författare)
  • Monitoring of total positive end-expiratory pressure during mechanical ventilation by artificial neural networks
  • 2017
  • Ingår i: Journal of clinical monitoring and computing. - : Springer Science and Business Media LLC. - 1387-1307 .- 1573-2614. ; 31:3, s. 551-559
  • Tidskriftsartikel (refereegranskat)abstract
    • Ventilation treatment of acute lung injury (ALI) requires the application of positive airway pressure at the end of expiration (PEEPapp) to avoid lung collapse. However, the total pressure exerted on the alveolar walls (PEEPtot) is the sum of PEEPapp and intrinsic PEEP (PEEPi), a hidden component. To measure PEEPtot, ventilation must be discontinued with an end-expiratory hold maneuver (EEHM). We hypothesized that artificial neural networks (ANN) could estimate the PEEPtot from flow and pressure tracings during ongoing mechanical ventilation. Ten pigs were mechanically ventilated, and the time constant of their respiratory system (τRS) was measured. We shortened their expiratory time (TE) according to multiples of τRS, obtaining different respiratory patterns (Rpat). Pressure (PAW) and flow (V'AW) at the airway opening during ongoing mechanical ventilation were simultaneously recorded, with and without the addition of external resistance. The last breath of each Rpat included an EEHM, which was used to compute the reference PEEPtot. The entire protocol was repeated after the induction of ALI with i.v. injection of oleic acid, and 382 tracings were obtained. The ANN had to extract the PEEPtot, from the tracings without an EEHM. ANN agreement with reference PEEPtot was assessed with the Bland-Altman method. Bland Altman analysis of estimation error by ANN showed -0.40 ± 2.84 (expressed as bias ± precision) and ±5.58 as limits of agreement (data expressed as cmH2O). The ANNs estimated the PEEPtot well at different levels of PEEPapp under dynamic conditions, opening up new possibilities in monitoring PEEPi in critically ill patients who require ventilator treatment.
  •  
9.
  • Perchiazzi, Gaetano, et al. (författare)
  • Regional distribution of lung compliance by image analysis of computed tomograms
  • 2014
  • Ingår i: Respiratory Physiology & Neurobiology. - : Elsevier BV. - 1569-9048 .- 1878-1519. ; 201, s. 60-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Computed tomography (CT) can yield quantitative information about volume distribution in the lung. By combining information provided by CT and respiratory mechanics, this study aims at quantifying regional lung compliance (CL) and its distribution and homogeneity in mechanically ventilated pigs. The animals underwent inspiratory hold maneuvers at 12 lung volumes with simultaneous CT exposure at two end-expiratory pressure levels and before and after acute lung injury (ALI) by oleic acid administration. CL and the sum of positive voxel compliances from CT were linearly correlated; negative compliance areas were found. A remarkably heterogeneous distribution of voxel compliance was found in the injured lungs. As the lung inflation increased, the homogeneity increased in healthy lungs but decreased in injured lungs. Image analysis brought novel findings regarding spatial homogeneity of compliance, which increases in ALI but not in healthy lungs by applying PEEP after a recruitment maneuver.
  •  
10.
  • Rylander, Christian, 1960, et al. (författare)
  • Functional residual capacity and respiratory mechanics as indicators of aeration and collapse in experimental lung injury.
  • 2004
  • Ingår i: Anesthesia and analgesia. - 0003-2999. ; 98:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased functional residual capacity (FRC) and compliance are two desirable, but seldom measured, effects of positive end-expiratory pressure (PEEP) in mechanically ventilated patients. To assess how these variables reflect the morphological lung perturbations during the evolution of acute lung injury and the morphological changes from altered PEEP, we correlated measurements of FRC and respiratory system mechanics to the degree of lung aeration and consolidation on computed tomography (CT). We used a porcine oleic acid model with FRC determinations by sulfur hexafluoride washin-washout and respiratory system mechanics measured during an inspiratory hold maneuver. Within the first hour, during constant volume-controlled ventilation with PEEP 5 cm H(2)O, FRC decreased by 45% +/- 15% (P = 0.005) and compliance decreased by 35% +/- 12% (P = 0.005). Resistance increased by 60% +/- 62% (P = 0.005). Only the FRC changes correlated significantly to the decreased aeration (R(2) = 0.56; P = 0.01) and the increased consolidation (R(2) = 0.43; P = 0.04) on CT. When the PEEP was changed to either 10 or 0 cm H(2)O, there were larger changes in FRC than in compliance. We conclude that, in our model, FRC was a more sensitive indicator of PEEP-induced aeration and recruitment of lung tissue and that FRC may be a useful adjunct to PaO(2) monitoring. IMPLICATIONS: Lung injury was quantified on computed tomography and related to monitored values of functional residual capacity and mechanical properties of the respiratory system. We found the functional residual capacity to be a more sensitive marker of the lung perturbations than the compliance. It might be of value to include functional residual capacity in the monitoring of acute lung injury.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy