SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Söderkvist Peter 1953 ) ;hsvcat:1"

Sökning: WFRF:(Söderkvist Peter 1953 ) > Naturvetenskap

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alkaissi, Hammoudi, 1983- (författare)
  • Identification of candidate genes involved in Mercury Toxicokinetics and Mercury Induced Autoimmunity
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • BACKGROUND: Autoimmune diseases require the involvement and activation of immune cells and occur when the body builds up an immune response against its own tissues. This process takes place due to the inability to distinguish self-antigen from foreign antigen. Systemic autoimmunity represents an important cause of morbidity and mortality in humans. The mechanisms triggering autoimmune responses are complex and involve a network of genetic factors. Genome wide association study (GWAS) is a powerful method, used to identify genetic risk factors in numerous diseases, such as systemic autoimmune diseases. The goal of GWAS is to identify these genetic risk factors in order to make predictions about who is at risk and investigate the biological process of disease susceptibility. There are several valuable mouse models to investigate the underlying mechanisms causing systemic autoimmune diseases in which mercury induced autoimmunity (HgIA) is a well- established and relevant model. HgIA in mice includes development of autoantibodies, immune complex glomerulonephritis, lymphocyte proliferation, hypergammaglobulinemia and polyclonal B cell activation. In humans, mercury exposure accumulates with considerable concentrations in kidney, liver, and brain. Toxicokinetics of Hg has been studied extensively but the key for inter-individual variation in humans are largely unclear. Differences in accumulation of renal Hg between inbred mouse strains suggest a genetic inter-strain variation regulating retention or/and excretion of Hg.OBJECTIVES: To find loci and candidate genes associated with phenotypes involved in the development of autoimmunity and find candidate genes involved in the regulation of renal Hg excretion.METHODS: MHC II (H-2s) mice were paired (A.SW x B10.S) to obtain F2 offspring exposed to 2.0 or 4.0 mg Hg in drinking water for 6 weeks. Mercury induced autoimmune phenotypes were studied with immunofluorescence (anti-nucleolar antibodies (ANoA)), ELISA anti-DNP/anti-ssDNA (polyclonal B cell activation), anti-chromatin antibodies (ACA) (4.0 mg Hg), and serum IgG1 concentrations. Mercury accumulation in kidney was performed previously and data was included as phenotype. F2 mice exposed to 2.0 mg Hg were genotyped with microsatellites for genome-wide scan with Ion Pair Reverse Phase High Performance Liquid Chromatography (IP RP HPLC). F2 mice exposed to 4.0 mg Hg were genotyped with single nucleotide polymorphisms for genomewide scan with SNP&SEQ technology platform. Quantitative trait loci (QTL) was established with R/QTL. Denaturing HPLC, next generation sequencing, conserved region analysis and genetic mouse strain comparison were used for haplotyping and fine mapping on QTLs associated with Hg concentration in kidney, development of ANoA and serum IgG1 hypergammaglobulinemia. Candidate genes (Pprc1, Bank1 and Nfkb1) verified by additional QTL were further investigated by real time polymerase chain reaction. Genes involved in the intracellular signaling together with candidate genes were included for gene expression analysis.RESULTS: F2 mice exposed to 2.0 mg Hg had low or no development of autoantibodies and showed no significant difference in polyclonal B cell activation in the B10.S and F2 strains. F2 mice exposed to 4.0 mg Hg developed autoantibodies and significantly increased IgG1 concentration and polyclonal B cell activation (anti-DNP). QTL analysis showed a logarithm of odds ratio (LOD) score between 2.9 – 4.36 on all serological phenotypes exposed to 4.0 mg Hg, and a LOD score of 5.78 on renal Hg concentration. Haplotyping and fine mapping associated the development of ANoA with Bank1 (B-cell scaffold protein with ankyrin repeats 1) and Nfkb1 (nuclear factor kappa B subunit 1). The serum IgG1 concentration was associated with a locus on chromosome 3, in which Rxfp4 (Relaxin Family Peptide/INSL5 Receptor 4) is a potential candidate gene. The renal Hg concentration was associated with Pprc1 (Peroxisome Proliferator-Activated Receptor Gamma, Co-activator-Related). Gene expression analysis revealed that the more susceptible A.SW strain expresses significantly higher levels of Nfkb1, Il6 and Tnf than the less susceptible B10.S strain. The A.SW strain expresses significantly lower levels of Pprc1 and cascade proteins than the B10.S strain. Development of ACA was associated with chromosomes 3, 6, 7 and 16 (LOD 3.1, 3.2, 3.4 and 6.8 respectively). Polyclonal B cell activation was associated with chromosome 2 with a LOD score of 2.9.CONCLUSIONS: By implementing a GWAS on HgIA in mice, several QTLs were discovered to be associated with the development of autoantibodies, polyclonal B cell activation and hypergammaglobulinemia. This thesis plausibly supports Bank1 and Nfkb1 as key regulators for ANoA development and HgIA seems to be initiated by B cells rather than T cells. GWAS on renal mercury excretion plausibly supports Pprc1 as key regulator and it seems that this gene has a protective role against Hg.
  •  
2.
  •  
3.
  • Alkaissi, Hammoudi, et al. (författare)
  • Bank1 and NF-kappaB as key regulators in anti-nucleolar antibody development
  • 2018
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic autoimmune rheumatic disorders (SARD) represent important causes of morbidity and mortality in humans. The mechanisms triggering autoimmune responses are complex and involve a network of genetic factors. Mercury-induced autoimmunity (HgIA) in mice is an established model to study the mechanisms of the development of antinuclear antibodies (ANA), which is a hallmark in the diagnosis of SARD. A.SW mice with HgIA show a significantly higher titer of antinucleolar antibodies (ANoA) than the B10.S mice, although both share the same MHC class II (H-2). We applied a genome-wide association study (GWAS) to their Hg-exposed F2 offspring to investigate the non-MHC genes involved in the development of ANoA. Quantitative trait locus (QTL) analysis showed a peak logarithm of odds ratio (LOD) score of 3.05 on chromosome 3. Microsatellites were used for haplotyping, and fine mapping was conducted with next generation sequencing. The candidate genes Bank1 (B-cell scaffold protein with ankyrin repeats 1) and Nfkbl (nuclear factor kappa B subunit 1) were identified by additional QTL analysis. Expression of the Bank1 and Nfkb1 genes and their downstream target genes involved in the intracellular pathway (Tlr9,II6, Tnf) was investigated in mercury-exposed A.SW and B10.S mice by real-time PCR. Bank1 showed significantly lower gene expression in the A.SW strain after Hg-exposure, whereas the B10.S strain showed no significant difference. Nfkb1, Tlr9, II6 and Tnf had significantly higher gene expression in the A.SW strain after Hg-exposure, while the B10.S strain showed no difference. This study supports the roles of Bank1 (produced mainly in B-cells) and Nfkbl (produced in most immune cells) as key regulators of ANoA development in HgIA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy