SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sadro Steven) ;pers:(Weyhenmeyer Gesa A.)"

Sökning: WFRF:(Sadro Steven) > Weyhenmeyer Gesa A.

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hampton, Stephanie E., et al. (författare)
  • Ecology under lake ice
  • 2017
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 20:1, s. 98-111
  • Forskningsöversikt (refereegranskat)abstract
    • Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer ‘growing seasons’. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.
  •  
2.
  • Jane, Stephen F., et al. (författare)
  • Widespread deoxygenation of temperate lakes
  • 2021
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 594:7861, s. 66-70
  • Tidskriftsartikel (refereegranskat)abstract
    • The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity(1,2), nutrient biogeochemistry(3), greenhouse gas emissions(4), and the quality of drinking water(5). The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity(6,7), but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification(8,9) or oxygen may increase as a result of enhanced primary production(10). Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans(6,7) and could threaten essential lake ecosystem services(2,3,5,11).
  •  
3.
  • Kraemer, Benjamin M., et al. (författare)
  • Climate change drives widespread shifts in lake thermal habitat
  • 2021
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 11:6, s. 521-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978-1995) and recent (1996-2013) time periods, with non-overlap increasing to 19.4% on average when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap compared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity. Using measurements from 139 global lakes, the authors demonstrate how long-term thermal habitat change in lakes is exacerbated by species' seasonal and depth-related constraints. They further reveal higher change in tropical lakes, and those with high biodiversity and endemism.
  •  
4.
  •  
5.
  • Pilla, Rachel M., et al. (författare)
  • Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.
  •  
6.
  • Vachon, Dominic, et al. (författare)
  • Paired O2-€“CO2 measurements provide emergent insights into aquatic ecosystem function
  • 2020
  • Ingår i: Limnology and Oceanography Letters. - : Wiley. - 2378-2242. ; 5:4, s. 287-294
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolic stoichiometry predicts that dissolved oxygen (O 2) and carbon dioxide (CO 2) in aquatic ecosystems should covary inversely; however, field observations often diverge from theoretical expectations. Here, we propose a suite of metrics describing this O 2 and CO 2 decoupling and introduce a conceptual framework for interpreting these metrics within aquatic ecosystems. Within this framework, we interpret cross-system patterns of high-frequency O 2 and CO 2 measurements in 11 northern lakes and extract emergent insights into the metabolic behavior and the simultaneous roles of chemical and physical forcing in shaping ecosystem processes. This approach leverages the power of high-frequency paired O 2-CO 2 measurements, and yields a novel, integrative aquatic system typology which can also be applicable more broadly to streams and rivers, wetlands and marine systems. Dissolved oxygen (O 2) remains one of the most studied attributes of aquatic ecosystems since the beginning of modern ecology. In 1957, G. E. Hutchinson famously wrote "A skillful limnologist can probably learn more about the nature of a lake from a series of oxygen determinations than from any other kind of chemical data" (Hutchinson 1957). The value of oxygen as an indicator of ecosystem function stems from its role in biogeochemical reactions, where it regulates
  •  
7.
  • Weyhenmeyer, Gesa A., et al. (författare)
  • Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (T-w-T-a) as a proxy for sensible heat flux (Q(H)). If Q(H) is directed upward, corresponding to positive T-w-T-a, it can enhance CO2 and CH4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative T-w-T-a across small ponds, lakes, streams/rivers and the sea shore (i.e. downward Q(H)), with T-w-T-a becoming increasingly negative with increasing T-a. Further examination of T-w-T-a using high-frequency temperature data from inland waters across the globe confirmed that T-w-T-a is linearly related to T-a. Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative T-w-T-a with increasing annual mean T-a since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative T-w-T-a, thereby reducing CO2 and CH4 transfer velocities from inland waters into the atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy