SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sajadian S.) "

Sökning: WFRF:(Sajadian S.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ryu, Y. -H., et al. (författare)
  • OGLE-2016-BLG-1190Lb : The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 155:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/ bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source-lens baseline object. The planet's mass, M-p = 13.4 +/- 0.9 M-J, places it right at the deuteriumburning limit, i. e., the conventional boundary between planets and brown dwarfs. Its existence raises the question of whether such objects are really planets (formed within the disks of their hosts) or failed stars (lowmass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf, M-host = 0.89. +/- 0.07 M-circle dot, and the planet has a semimajor axis a similar to 2.0 au. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth-Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultradense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over < 1% of an orbital period.
  •  
2.
  • Han, C., et al. (författare)
  • OGLE-2017-BLG-0329L : A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 859:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass measurements of gravitational microlenses require one to determine the microlens parallax pE, but precise pE measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which pi(E) is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-pi(E) model at the 2 sigma level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector pE by factors similar to 18 and similar to 4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M-1, M-2) similar to (1.1, 0.8) M-circle dot or similar to(0.4, 0.3) M-circle dot according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken similar to 10 years after the event.
  •  
3.
  • Udalski, A., et al. (författare)
  • OGLE-2017-BLG-1434Lb : Eighth q < 1 x 10(-4) Mass-Ratio Microlens Planet Confirms Turnover in Planet Mass-Ratio Function
  • 2018
  • Ingår i: Acta Astronomica. - 0001-5237. ; 68:1, s. 1-42
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a cold Super-Earth planet (m(p) = 4.4 +/- 0.5 M-circle plus) orbiting a low-mass (M = 0.23 +/- 0.03 M-circle dot) M dwarf at projected separation a(perpendicular to) l = 1.18 +/- 0.10 a.u., i.e., about 1.9 times the distance the snow line. The system is quite nearby for a microlensing planet, D-L = 0.86 +/- 0.09 kpc. Indeed, it was the large lens-source relative parallax pi(rel) = 1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, microlens parallax pi(E) proportional to (pi(rel)/M)(1)(/2) that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio q < 1 x 10(-4). We apply a new planet-detection sensitivity method, which is a variant of V/V-max, to seven of these eight planets to derive the mass-ratio function in this regime. We find dN/ d lnq proportional to q(P) , with p =1.05(-0.68)(+0.78), which confirms the turnover in the mass function found by Suzuki et al. relative to the power law of opposite sign n = -0.93 +/- 0.13 at higher mass ratios q greater than or similar to 2 x 10(-4). We combine our result with that of Suzuki et al. to obtain p = 0.73(-0.34)(+0.42.)
  •  
4.
  • Hirao, Yuki, et al. (författare)
  • OGLE-2017-BLG-0406 : Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10(-4) from the light-curve modeling. The ground-only and Spitzer-only data each provide very strong one-dimensional (1D) constraints on the 2D microlens parallax vector pi(E). When combined, these yield a precise measurement of pi(E) and of the masses of the host M-host = 0.56 +/- 0.07 M-circle dot and planet M-planet = 0.41 +/- 0.05 M-Jup. The system lies at a distance D-L = 5.2 +/- 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a(perpendicular to) = 3.5 +/- 0.3 au (i.e., just over twice the snow line). The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10 sigma error.
  •  
5.
  • Sajadian, S., et al. (författare)
  • Improving Connectivity of Nodes in Mobile WSN
  • 2011
  • Ingår i: Advanced Information Networking and Applications (AINA), 2011 IEEE International Conference on. - Los Alamitos : IEEE Computer Society. - 9780769543376 - 9781612843131 ; , s. 364-371
  • Konferensbidrag (refereegranskat)abstract
    • How to measure and maintain connectivity is an important issue in ad hoc networks. A special case of such network is Wireless Sensor Networks (WSN), which are often deployed in harsh environments and also susceptible to a number of problems that may negatively affect the connectivity among the nodes. An additional factor that increases the cost of connectivity maintenance in ad hoc networks is when the nodes can move. When it comes to the WSN domain, this aspect is still more problematic, as the often small sensor nodes have in general a limited energy budget, and then should not use too much energy in the management of their connectivity. The goal of this work is to choose a topology for mobile WSN and improve the network connectivity as a whole while considering and influencing the energy consumption among all the nodes in the network. Different network topologies are considered and discussed. After evaluation of the pros and cons of the estimation quality when applied to each studied topology, a clustered hierarchical algorithm was chosen for network deployment. By means of a link estimator and considering different variables, a metric have been defined to estimate the link reliability. As a result, improved network connectivity is reported.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy