SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sala I) ;mspu:(conferencepaper)"

Sökning: WFRF:(Sala I) > Konferensbidrag

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abgrall, N., et al. (författare)
  • The large enriched germanium experiment for neutrinoless double beta decay (LEGEND)
  • 2017
  • Ingår i: AIP Conference Proceedings. - : Author(s). - 1551-7616 .- 0094-243X. ; 1894
  • Konferensbidrag (refereegranskat)abstract
    • The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.
  •  
2.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
3.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
4.
  • Battistoni, G, et al. (författare)
  • FLUKA Monte Carlo calculations for hadrontherapy application
  • 2013
  • Ingår i: CERN-Proceedings-2012-002. ; , s. 461-467
  • Konferensbidrag (refereegranskat)abstract
    • Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models for the description of the transport and the interaction of all components of the expected radiation field (ions, hadrons, electrons, positrons and photons). This contribution will address the specific case of the general-purpose particle and interaction code FLUKA. In this work, an application of FLUKA will be presented, i.e. establishing CT (computed tomography)-based calculations of physical and RBE (relative biological effectiveness)-weighted dose distributions in scanned carbon ion beam therapy.
  •  
5.
  • Battistoni, G., et al. (författare)
  • Generator of neutrino-nucleon interactions for the FLUKA based simulation code
  • 2009
  • Ingår i: American Institute of Physics Conference Series. - American Institute of Physics : AIP. ; , s. 343-346
  • Konferensbidrag (refereegranskat)abstract
    • An event generator of neutrino-nucleon and neutrino-nucleus interactions has been developed for the general purpose Monte Carlo code FLUKA. The generator includes options for simulating quasi-elastic interactions, the neutrino-induced resonance production and deep inelastic scattering. Moreover, it shares the hadronization routines developed earlier in the framework of the FLUKA package for simulating hadron-nucleon interactions. The simulation of neutrino-nuclear interactions makes use of the well developed PEANUT event generator implemented in FLUKA for modeling of the interactions between hadrons and nuclei. The generator has been tested in the neutrino energy range from 0 to 10 TeV and it is available in the standard FLUKA distribution. Limitations related to some particular kinematical conditions are discussed. A number of upgrades is foreseen for the generator which will optimize its applications for simulating experiments in the CNGS beam.
  •  
6.
  • Golosio, B., et al. (författare)
  • The FIRST experiment for nuclear fragmentation measurements at GSI
  • 2011
  • Ingår i: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE. ; , s. 2277-2280
  • Konferensbidrag (refereegranskat)abstract
    • Nuclear fragmentation processes are relevant in different fields of physics concerning both basic research and applications. FIRST (Fragmentation of Ions Relevant for Space and Therapy) is an experiment aimed at the measurement of double differential cross sections (DDCS), with respect to kinetic energy and scattering polar angle, of nuclear fragmentation processes relevant for hadron therapy and for space radiation protection applications, in the energy range between 100 and 1000 MeV/u. The experiment was mounted at the GSI laboratories of Darmstadt, in Germany. A first data taking was performed in August 2011, using 400 MeV/u 12C on carbon and gold targets. In this work we present a description of the experimental apparatus and some figures from the data acquisition and from the preliminary work on data analysis
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy