SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salehi S Albert) ;pers:(Cilio Corrado)"

Sökning: WFRF:(Salehi S Albert) > Cilio Corrado

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bolmeson, Caroline, et al. (författare)
  • Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects.
  • 2011
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; Dec, s. 16-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Many microRNAs (miRNAs) are known to be cell-type specific and are implicated in development of diseases. We investigated the global expression pattern of miRNAs in human pancreatic islets compared to liver and skeletal muscle, using bead-based technology and quantitative RT-PCR. In addition to the known islet-specific miR-375, we also found enrichment of miR-127-3p, miR-184, miR-195 and miR-493∗ in the pancreatic islets. The expression of miR-375, miR-127-3p, miR-184 and the liver-enriched miR-122 were positively correlated to insulin biosynthesis, while the expression of miR-127-3p and miR-184 were negatively correlated to glucose-stimulated insulin secretion (GSIS). These correlations were absent in islets of glucose intolerant donors (HbA1c⩾6.1). We suggest the presence of an islet-specific miRNA network, which consists of at least miR-375, miR-127-3p and miR-184, potentially involved in insulin secretion. Our results provide new insight into miRNA-mediated regulation of insulin secretion in healthy and glucose intolerant subjects.
  •  
2.
  • Kalis, Martins, et al. (författare)
  • α 1-antitrypsin enhances insulin secretion and prevents cytokine-mediated apoptosis in pancreatic β-cells.
  • 2010
  • Ingår i: Islets. - : Informa UK Limited. - 1938-2022 .- 1938-2014. ; 2:3, s. 185-189
  • Tidskriftsartikel (refereegranskat)abstract
    • α1-antitrypsin (AAT) is a serine protease inhibitor, which recently has been shown to prevent type 1 diabetes (T1D) development, to prolong islet allograft survival and to inhibit β-cell apoptosis in vivo. It has also been reported that T1D patients have significantly lower plasma concentrations of AAT suggesting the potential role of AAT in the pathogenesis of T1D. We have investigated whether plasma-purified AAT can affect β-cell function in vitro. INS-1E cells or primary rat pancreatic islets were used to study the effect of AAT on insulin secretion after glucose, glucagon-like peptide-1 (GLP-1) and forskolin stimulation and on cytokine-mediated apoptosis. The secreted insulin and total cyclic AMP (cAMP) were determined using radioimmunoassay and apoptosis was evaluated by propidium iodide staining followed by FACS analysis. We found that AAT increases insulin secretion in a glucose-dependent manner, potentiates the effect of GLP-1 and forskolin and neutralizes the inhibitory effect of clonidine on insulin secretion. The effect of AAT on insulin secretion was accompanied by an increase in cAMP levels. In addition, AAT protected INS-1E cells from cytokine-induced apoptosis. Our findings show that AAT stimulates insulin secretion and protects β-cells against cytokine-induced apoptosis, and these effects of AAT seem to be mediated through the cAMP pathway. In view of these novel findings we suggest that AAT may represent a novel anti-inflammatory compound to protect β-cells under the immunological attack in T1D but also therapeutic strategy to potentiate insulin secretion in type 2 diabetes (T2D).
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy